后序遍历(LRD):
①访问后序遍历中根节点的左子树
②访问后序遍历中根结点的右子树
③访问根结点
假设只有A,B,C(对于上图)三个结点,则后序遍历的结果:
B C A 开始第一次递归推演(对于B结点):
DB C A
第二次递归推演(对于D结点):
D B C A
GD B C A
第三次递归推演(对于C结点):
G D B C A
G D B EFC A
最终后序遍历结果:G D B EFC A
代码实现:
#include <stdio.h>
#include <stdlib.h>
typedef char DataType;
typedef struct Node
{
DataType data;
struct Node *leftChild;
struct Node *rightChild;
}BiTreeNode;
/*初始化创建二叉树的头结点*/
void Initiate(BiTreeNode **root)
{
*root = (BiTreeNode *)malloc(sizeof(BiTreeNode));
(*root)->leftChild = NULL;
(*root)->rightChild = NULL;
}
/*若当前结点curr非空,在curr的左子树插入元素值为x的新结点*/
/*原curr所指结点的左子树成为新插入结点的左子树*/
/*若插入成功则返回新插入结点的指针,否则返回空指针*/
BiTreeNode *InsertLeftNode(BiTreeNode *curr, DataType x)
{
BiTreeNode *s, *t;
if(curr == NULL) return NULL;
t = curr->leftChild;
s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
s->data = x;
s->leftChild = t;
s->rightChild = NULL;
curr->leftChild = s;
return curr->leftChild;
}
BiTreeNode *InsertRightNode(BiTreeNode *curr, DataType x)
{
BiTreeNode *s, *t;
if(curr == NULL) return NULL;
t = curr->rightChild;
s = (BiTreeNode *)malloc(sizeof(BiTreeNode));
s->data = x;
s->rightChild = t;
s->leftChild = NULL;
curr->rightChild = s;
return curr->rightChild;
}
/*打印结点数据内容函数*/
void Visit(DataType item)
{
printf("%c ", item);
}
/*前序遍历函数,访问操作为Visit函数*/
void PreOrder(BiTreeNode *t, void Visit(DataType item))
{
if(t!=NULL)
{
Visit(t->data);
PreOrder(t->leftChild, Visit);
PreOrder(t->rightChild, Visit);
}
}
/*中序遍历二叉树,访问操作为Visit函数*/
void InOrder(BiTreeNode *t, void Visit(DataType item))
{
if(t!=NULL)
{
InOrder(t->leftChild, Visit);
Visit(t->data);
InOrder(t->rightChild, Visit);
}
}
void PostOrder(BiTreeNode *t, void Visit(DataType item))
{
if(t!=NULL)
{
PostOrder(t->leftChild, Visit);
PostOrder(t->rightChild, Visit);
Visit(t->data);
}
}
int main()
{
BiTreeNode *root, *p, *q, *pp;
Initiate(&root);
p = InsertLeftNode(root, 'A');
p = InsertLeftNode(p, 'B');
p = InsertLeftNode(p, 'D');
p = InsertRightNode(p, 'G');
q = InsertRightNode(root->leftChild, 'C');
pp = InsertLeftNode(q, 'E');
InsertRightNode(q, 'F');
printf("前序遍历的结果:");
PreOrder(root->leftChild, Visit);
printf("\n中序遍历的结果:");
InOrder(root->leftChild, Visit);
printf("\n后序遍历的结果:");
PostOrder(root->leftChild, Visit);
return 0;
}