利用前序、中序(后序)构建二叉树
想起最近做到的两道利用前序、中序以及利用中序、后序构建二叉树的题,其也广泛出现在面试题中的选择题中,现整理总结如下。
1. 利用前序、中序构建二叉树
LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]
Return the following binary tree:
3
/ \
9 20
/ \
15 7
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (preorder.empty() || inorder.empty()) {
return NULL;
}
return buildTreeCore(preorder, 0, preorder.size() - 1, inorder, 0, inorder.size() - 1);
}
TreeNode* buildTreeCore(vector<int>& preorder, int pre_begin, int pre_end, vector<int>& inorder, int in_begin, int in_end) {
if (pre_begin > pre_end) return NULL;
TreeNode* root = new TreeNode(preorder[pre_begin]);
for (int i = 0; i <= pre_end - pre_begin; ++i) {
if (preorder[pre_begin] == inorder[in_begin + i]) {
root->left = buildTreeCore(preorder, pre_begin + 1, pre_begin + i, inorder, in_begin, in_begin + i - 1);
root->right = buildTreeCore(preorder, pre_begin + i + 1, pre_end, inorder, in_begin + i + 1, in_end);
}
}
return root;
}
};
其中需要注意两个点:
- 为了保持这类题的一致解题思路,这里最好传入的参数为
preorder.size() - 1
和inorder.size() - 1
,虽然直接传入preorder.size()
和inorder.size()
也可以,但是这个做法在利用中序、后序数据构建二叉树时相对麻烦,故而最好统一; - 对应判定条件
for (int i = 0; i <= pre_end - pre_begin; ++i)
,这种判定条件其实处理起来也是相对比较方便,当然,也可以利用for (int i = in_begin; i <= in_end; ++i)
这种处理,然后利用if (preorder[pre_begin] == inorder[i])
进行判断, 但是后面利用中序或者后序进行构建组织索引时就会比较麻烦,如本题就需要更新为:root->left = buildTreeCore(preorder, pre_begin + 1, i - in_begin + pre_begin, inorder, in_begin, i - 1);
以及root->right = buildTreeCore(preorder, i - in_begin + 1 + pre_begin, pre_end, inorder, i + 1, in_end);
2. 利用中序、后序构建二叉树
LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
Return the following binary tree:
3
/ \
9 20
/ \
15 7
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.empty() || postorder.empty()) return NULL;
return buildTreeCore(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
}
TreeNode* buildTreeCore(vector<int>& inorder, int in_front, int in_back, vector<int>& postorder, int post_front, int post_back) {
if (in_front > in_back) return NULL;
TreeNode* root = new TreeNode(postorder[post_back]);
for (int i = 0; i <= in_back - in_front; ++i) {
if (postorder[post_back] == inorder[in_front + i]) {
root->left = buildTreeCore(inorder, in_front, in_front + i - 1, postorder, post_front, post_front + i - 1);
root->right = buildTreeCore(inorder, in_front + i + 1, in_back, postorder, post_front + i, post_back - 1);
}
}
return root;
}
};
这里就体现出来传参的简约性:buildTreeCore(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
;
以及判定条件:for (int i = 0; i <= in_back - in_front; ++i)
和 if (postorder[post_back] == inorder[in_front + i])
。
3. 总结
上述利用前序、中序构建二叉树与利用中序、后序构建二叉树的解题思路是近似的;
但是要注意传参,如自己在利用中序、后序构建二叉树时 buildTreeCore(inorder, 0, inorder.size(), postorder, 0, postorder.size());
然后直接构建二叉树为 TreeNode* root = new TreeNode(postorder[post_back])
,造成错误,故而以后都统一传参为 buildTreeCore(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1);
比较方便。