DatenLord前沿技术分享 No.29

达坦科技专注于打造新一代开源跨云存储平台DatenLord,通过软硬件深度融合的方式打通云云壁垒,致力于解决多云架构、多数据中心场景下异构存储、数据统一管理需求等问题,以满足不同行业客户对海量数据跨云、跨数据中心高性能访问的需求。BSV的仿真加速可以提升硬件开发调试的效率。在本周的前沿技术分享中,我们邀请到了梁之杰,来为大家分享基于BSV的RTL仿真加速设计研究

01、演讲题目

基于BSV的RTL仿真加速设计研究

02、演讲时间

2023年7月9日上午10:30

03、演讲人

梁之杰

华南理工大学2023届毕业生

04、引言

电路的仿真模型主要有两个不同的抽象级别,分别是寄存器传输级模型(RTL)和事务级模型(TLM)。如何综合利用两者的优势,进而缩短芯片设计和制造周期成为了越来越多开发者的诉求。

05、内容简介

BSV具有两种仿真方式,分别在事务级和寄存器传输级上进行,故能很好地匹配TLM-to-RTL设计流程。然而,在寄存器传输级上的仿真验证时间占比远大于其他阶段,这将极大地影响整个芯片设计周期。本次分享将介绍一种基于BSV加速RTL仿真进程的方案,即通过利用事务级仿真的结果,通过利用多核CPU,使得各模块的RTL仿真可以独立运行在单个CPU上,实现了并行仿真。

06、直播预约

欢迎您预约直播,或者登陆腾讯会议观看直播:

会议号:474-6575-9473


达坦科技(DatenLord)专注下一代云计算——“天空计算”的基础设施技术,致力于拓宽云计算的边界。达坦科技打造的新一代开源跨云存储平台DatenLord,通过软硬件深度融合的方式打通云间壁垒,实现数据高效跨云访问,建立海量异地、异构数据的统一存储访问机制,为云上应用提供高性能安全存储支持。以满足不同行业客户对海量数据跨云、跨数据中心高性能访问的需求。

公众号:达坦科技DatenLord
DatenLord官网http://www.datenlord.io
知乎账号:
达坦科技DatenLord - 知乎
B站
https://space.bilibili.com/2017027518

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

达坦科技DatenLord

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值