3.2时延和多普勒效应的解
A.时延的解
假设零多普勒切片的模糊函数,令fd=0.f_d=0.fd=0.同时假定在实际应用中,位宽是远远大于被目标的时延,也就是τ≪T.{\tau}{\ll}T.τ≪T.因此,当0≤τ≤T0{\leq}{\tau}{\leq}T0≤τ≤T时,且i=0.i=0.i=0.利用上述这些假设,则等式(12)可以划为如下形式
X(τ,0)=rect(τT){∑l=1N(T−τ)ejπ(plql2T+μ(2l−1)T)τsinc(μτ(T−τ))+∑l=1N−1[τejπ(pl+1ql+1+plql4Tτ+2μlTτ+pl+1ql+1−plql2l+pl−pl+12)⋅sinc(τ(μτ+pl+1ql+1+plql4T))]}(16)
{\Chi}({\tau},0)=rect\big({\frac{\tau}{T}}\big){\Bigg\{{\sum\limits_{l=1}^{N}}(T-{\tau})e^{j{\pi}(\frac{p_lq_l}{2T}+{\mu}(2l-1)T){\tau}}sinc({\mu}{\tau}(T-{\tau}))+{\sum\limits_{l=1}^{N-1}\Bigg[{\tau}e^{j{\pi}({\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}}{\tau}+2{\mu}lT{\tau}+{\frac{
p_{l+1}q_{l+1}-p_lq_l}{2}}l+{\frac{p_l-p_{l+1}}{2}})}{\cdot}sinc\big({\tau}({\mu}{\tau}+{\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}})\big)}\Bigg]}{\Bigg\}}{\qquad}(16)
X(τ,0)=rect(Tτ){l=1∑N(T−τ)ejπ(2Tplql+μ(2l−1)T)τsinc(μτ(T−τ))+l=1∑N−1[τejπ(4Tpl+1ql+1+plqlτ+2μlTτ+2pl+1ql+1−plqll+2pl−pl+1)⋅sinc(τ(μτ+4Tpl+1ql+1+plql))]}(16)
在等式(16)中,rect(τT)rect({\frac{\tau}{T}})rect(Tτ)仅仅有限的有效范围内可以被忽略。因为τ≪T.{\tau}{\ll}T.τ≪T.,所以第二项求和式可以直接忽略,同时T−τ=T(1−τT)≈T.T-{\tau}=T\big(1-{\frac{\tau}{T}}\big){\approx}T.T−τ=T(1−Tτ)≈T.因此
X(τ,0)≈Tsinc(μTτ)ejπ(fracplql2(2l−1)BT+1)μ(2l−1)Tτ(17)
{\Chi}({\tau},0){\approx}Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T
{\tau}}{\qquad}(17)
X(τ,0)≈Tsinc(μTτ)ejπ(fracplql2(2l−1)BT+1)μ(2l−1)Tτ(17)
如果BT≫1BT{\gg}1BT≫1,那么等式(17)两边可以同时去绝对值,
∣X(τ,0)∣≈∣Tsinc(μTτ)ejπ(plql2(2l−1)BT+1)μ(2l−1)Tτ∣=∣NTsinc(μNTτ)∣(18)
|{\Chi}({\tau},0)|{\approx}\big|Tsinc({\mu}T{\tau})e^{j{\pi}(\frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T{\tau}}\big|=|NTsinc({\mu}NT{\tau})|{\qquad}(18)
∣X(τ,0)∣≈∣∣Tsinc(μTτ)ejπ(2(2l−1)BTplql+1)μ(2l−1)Tτ∣∣=∣NTsinc(μNTτ)∣(18)
在这种情况下,时延的解就是1μNT{\frac{1}{{\mu}NT}}μNT1,即距离分辨率为c2μNT{\frac{c}{2{\mu}NT}}2μNTc
{\Chi}({\tau},0)=rect\big({\frac{\tau}{T}}\big)
{\Bigg\{{\sum\limits_{l=1}^{N}}(T-{\tau})e^{j{\pi}(\frac{p_lq_l}{2T}+{\mu}(2l-1)T){\tau}}
sinc({\mu}{\tau}(T-{\tau}))\Bigg\}}
+{\sum\limits_{l=1}^{N-1}\Bigg[{\tau}e^{j{\pi}({\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}}{\tau}+2{\mu}lT{\tau}
+{\frac{p_{l+1}q_{l+1}-p_lq_l}{2}}l+{\frac{p_l-p_{l+1}}{2}}){\cdot}sinc\big({\tau}({\mu}{\tau}+{\frac{p_{l+1}q_{l+1}+p_lq_l}{4T}})\big)}\Bigg]}{\qquad}(16)
{\Chi}({\tau},0)
{\approx}
Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T
{\tau}}{\qquad}(17)
|{\Chi}({\tau},0)|
{\approx}
\big|Tsinc({\mu}T{\tau})e^{j{\pi}(frac{p_lq_l}{2(2l-1)BT}+1){\mu}(2l-1)T{\tau}}\big|
=|NTsinc({\mu}NT{\tau})|{\qquad}(18)