LeetCode 135. Candy

这篇文章介绍了一种算法,通过寻找每个孩子左侧和右侧的最长递增序列,确定他们能获得的糖果数量,确保公平分配。Solution类中的candy方法详细展示了如何实现这个过程。

找出每个child分别相对于左边和右边的最长递增序列长度,取两者最大值就是他最后应该获得的糖数

class Solution {
    public int candy(int[] ratings) {
        int ans = 0;
        int n = ratings.length;
        int []left = new int[n];
        int []right = new int[n];
        left[0] = 1;
        right[n-1] = 1;
        for(int i=1;i<n;i++){
            if(ratings[i-1]<ratings[i])
                left[i] = left[i-1]+1;
            else left[i] = 1;
        }
        for(int i=n-2;i>=0;i--){
            if(ratings[i+1]<ratings[i])
                right[i] = right[i+1]+1;
            else right[i] = 1;
            ans += Math.max(left[i],right[i]);
        }
        ans += left[n-1];
        return ans;
    }
}

### 贪心算法LeetCode 上的应用 贪心算法是一种通过局部最优选择来达到全局最优解的方法。其核心思想是在每一步都做出当前状态下最好的选择,从而希望最终能够得到整体的最优解[^1]。 以下是基于 Python 的几个经典贪心算法题目及其解决方案: --- #### 题目 1: **LeetCode 455. Assign Cookies** 给定两个数组 `g` 和 `s`,分别表示孩子的胃口值和饼干大小。每个孩子最多只能吃一块饼干,求最大满足的孩子数量。 ##### 解法 先对两个数组进行排序,然后从小到大分配饼干给尽可能多的孩子。 ```python def findContentChildren(g, s): g.sort() s.sort() i, j = 0, 0 count = 0 while i < len(g) and j < len(s): if s[j] >= g[i]: count += 1 i += 1 j += 1 return count ``` 此方法利用了贪心策略,在每次循环中优先考虑最小需求的孩子并匹配最合适的饼干[^3]。 --- #### 题目 2: **LeetCode 135. Candy** 有 n 个小孩站在一条直线上,每个小孩有一个评分值。分发糖果的要求是:如果某个小孩的评分高于相邻的小孩,则该小孩获得更多的糖果;至少每人一颗糖果。 ##### 解法 两次遍历数组,一次从前向后,另一次从后向前,确保左右两侧的关系都被满足。 ```python def candy(ratings): n = len(ratings) candies = [1] * n for i in range(1, n): if ratings[i] > ratings[i - 1]: candies[i] = candies[i - 1] + 1 for i in range(n - 2, -1, -1): if ratings[i] > ratings[i + 1]: candies[i] = max(candies[i], candies[i + 1] + 1) return sum(candies) ``` 这种方法通过两轮扫描实现了局部最优条件下的全局最优解。 --- #### 题目 3: **LeetCode 621. Task Scheduler** 给定一组任务字符以及冷却时间 `n`,计算完成所有任务所需的最少单位时间数。 ##### 解法 统计频率最高的任务数目,并根据这些任务之间的间隔安排其他任务。 ```python from collections import Counter def leastInterval(tasks, n): task_counts = list(Counter(tasks).values()) max_freq = max(task_counts) max_count = task_counts.count(max_freq) intervals = (max_freq - 1) * (n + 1) + max_count return max(len(tasks), intervals) ``` 上述代码的关键在于理解如何合理填充高频任务之间的时间间隙。 --- #### 总结 解决贪心类问题时,通常需要明确以下几个方面: - 是否可以通过逐步优化子结构解决问题? - 如何定义“局部最优”,它是否能导向“全局最优”? 此外,清晰表达逻辑流程有助于构建完整的解决方案[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值