分数 15 作者 CHEN, Yue 单位 浙江大学
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
代码长度限制 16 KB
时间限制 400 ms
内存限制 64 MB
C语言:
#include <stdio.h>
int main()
{
int step=0,n;
scanf("%d",&n);
while(n!=1)
{
if(n%2==1)
n=3*n+1;
else
{
n=n/2;
step++;
}
}
printf("%d",step);
return 0;
}
C(gcc):
编辑器输出:
C(clang):
C(gcc):
#include <stdio.h>
int main()
{
int step=0,n;
if(scanf("%d",&n)==1)
{
while(n!=1)
{
if(n%2==1)
n=3*n+1;
else
{
n=n/2;
step++;
}
}
printf("%d",step);
}
else
{
printf("Failed to read integer.\n");
}
return 0;
}
C(gcc)with 无编辑器输出: