Decription
求将2−n2−n的数划分成两个集合(有的数可以不用)的满足条件方案数。
条件是两个集合中的数互质。
n⩽500n⩽500
Solution
考虑n⩽20n⩽20的情况,这时候总共只有88个质数,所以可以状压两个集合所包含的素数集合,每次枚举这个数被谁选择即可。
对于,质数太多,无法状压,但是每个数最多只会有一个⩾n−−√⩾n的质因子,所以对于一段最大质因子为pp的数(),要么划分进一个集合,要么都不选。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 505;
int n, mod, f[1 << 8][1 << 8], g[2][1 << 8][1 << 8];
pair<int, int> a[maxn];
inline int gi()
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
int sum = 0;
while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
return sum;
}
const int maxp = 8;
const int p[8] = {
2, 3, 5, 7, 11, 13, 17, 19
};
inline void inc(int &a, int b)
{
a += b;
if (a >= mod) a -= mod;
}
int main()
{
n = gi(); mod = gi();
for (int i = 2; i <= n; ++i) {
int k = i;
for (int j = 0; j < maxp; ++j)
if (k % p[j] == 0) {
a[i].second ^= 1 << j;
while (k % p[j] == 0) k /= p[j];
}
a[i].first = k;
}
sort(a + 2, a + n + 1);
f[0][0] = 1;
for (int i = 2; i <= n; ++i) {
if (i == 2 || a[i].first == 1 || a[i].first != a[i - 1].first) {
memcpy(g[0], f, sizeof(g[0]));
memcpy(g[1], f, sizeof(g[1]));
}
for (int s1 = (1 << maxp) - 1; s1 >= 0; --s1)
for (int s2 = (1 << maxp) - 1; s2 >= 0; --s2) {
if ((s2 & a[i].second) == 0) inc(g[0][s1 | a[i].second][s2], g[0][s1][s2]);
if ((s1 & a[i].second) == 0) inc(g[1][s1][s2 | a[i].second], g[1][s1][s2]);
}
if (i == n || a[i].first == 1 || a[i].first != a[i + 1].first) {
for (int s1 = (1 << maxp) - 1; ~s1; --s1)
for (int s2 = (1 << maxp) - 1; ~s2; --s2) {
f[s1][s2] = g[0][s1][s2] + g[1][s1][s2] - f[s1][s2];
if (f[s1][s2] < 0) f[s1][s2] += mod;
if (f[s1][s2] >= mod) f[s1][s2] -= mod;
}
}
}
int ans = 0;
for (int s1 = (1 << maxp) - 1; ~s1; --s1)
for (int s2 = (1 << maxp) - 1; ~s2; --s2)
if ((s1 & s2) == 0) inc(ans, f[s1][s2]);
printf("%d\n", ans);
return 0;
}