大模型开发入门到进阶:学习路线图分享,大模型入门到精通,收藏这篇就足够了!

大模型开发全攻略:从入门到进阶

从 ChatGPT、DeepSeek,到 Qwen、GLM、Claude……
大模型(LLM)正成为 AI 世界的核心引擎。

无论你是算法、后端还是工程背景,掌握大模型开发都是未来技术人的必修课。
但面对碎片化的知识和复杂的框架,很多人都会问——

“我该从哪里开始?要学什么?先搞清楚原理还是直接上手项目?”

这篇文章将分享从入门到实战的完整路径


🧭 总体学习框架

学习路线分为 4 个阶段,从基础知识到工程实战, 每一阶段都能“看得见成长、做得出项目”。

阶段时间目标核心主题
🌱 阶段10–2个月打牢基础Python、数学、深度学习、Transformer
⚙️ 阶段23–5个月掌握主流框架Prompt工程、LangChain、RAG、Agent
🔧 阶段36–9个月项目与微调LoRA微调、部署、向量数据库
🧩 阶段49–12个月多模态与工程化CLIP、LLaVA、优化、云端部署

🌱 阶段1:打牢基础(0–2个月)

没有坚实的数学与框架基础,后续所有“魔法”都会变成黑箱。

🎯 学习重点

  • 数学三件套

    :线性代数(矩阵运算、求导)、概率统计(分布、似然函数)

  • Python数据与AI工具链

    :NumPy / Pandas / Matplotlib

  • 深度学习基础

    :神经网络、反向传播、梯度下降

  • Transformer核心机制

    :自注意力、多头注意力、位置编码

💡 实践任务

  • PyTorch 复现一个简单的 Transformer
  • 训练一个 MNIST 图像分类模型

📘 推荐资源卡

  • 《深度学习》(Ian Goodfellow)
  • 吴恩达《Deep Learning Specialization》
  • The Illustrated Transformer

⚙️ 阶段2:掌握大模型核心与主流框架(3–5个月)

这一阶段,你要从“能用”走向“能理解、能整合”。

🎯 学习重点

1️⃣ 大模型原理
  • Transformer、GPT、BERT、MoE 架构解析
  • 预训练与微调的区别
  • 生成式 vs 判别式模型
2️⃣ Prompt 工程
  • Prompt 四要素:角色、目标、方案、输出格式
  • 技巧:Zero-shot、Few-shot、Chain-of-Thought(思维链)
  • 进阶:Prompt 自调优、结构化 Prompt、约束性 Prompt
3️⃣ LangChain 框架
  • Chains / Memory / Agents / Function Calling
  • 实战:问答系统、文档摘要、SQL生成
4️⃣ RAG 技术(Retrieval-Augmented Generation)
  • 核心流程:数据提取 → 向量化 → 检索 → 生成
  • 工具:Chroma、Milvus、FAISS
  • 应用:企业知识库问答、信息检索增强

📘 推荐资源卡

  • LangChain 官方文档
  • OpenAI Cookbook
  • HuggingFace Transformers

🧪 项目建议

  • 🔹 用 LangChain + Chroma 构建知识库问答系统
  • 🔹 设计一个多轮对话 Agent

🔧 阶段3:模型微调与工程化(6–9个月)

理论够多了,现在该“造”自己的模型。

🎯 学习重点

🔹 微调技术
  • 轻量化微调

    :LoRA、QLoRA、Prefix Tuning、P-Tuning

  • 数据准备与增强、超参数设置、评估与验证

  • 框架:HuggingFace、LLaMA-Factory、DeepSpeed

🔹 模型优化与部署
  • 分布式训练(数据并行、模型并行)
  • 混合精度训练(FP16 / FP32)
  • 模型压缩与蒸馏
🔹 工程化工具
  • Docker / Ollama / Dify
  • REST API 接口开发(FastAPI / Gradio)

📘 推荐资源卡

  • HuggingFace 官方课程
  • DeepSpeed 文档
  • LLaMA Factory GitHub

🧪 实战项目

  • 微调 Qwen2 / Llama3 模型(LoRA)
  • 构建并部署一个 AI 助手(基于 Dify)

🧩 阶段4:多模态与算法进阶(9–12个月)

让模型不仅“理解语言”,还“看得懂世界”。

🎯 学习重点

  • 多模态模型

    :CLIP、BLIP、LLaVA、Stable Diffusion

  • 跨模态任务

    :图文匹配、视觉问答、文生图

  • 强化学习与优化

    :RLHF、蒸馏、剪枝、量化

  • 云端部署与系统化

    :Docker + K8S + 云平台(AWS / 阿里云)

📘 推荐资源卡

  • OpenAI 技术博客
  • 《Diffusion Models Explained》
  • LLaVA GitHub

🧪 实战项目

  • 复现 BLIP 图生文
  • 构建多模态 AI 助手(Vision + Text)

🧱 执行与成长建议

  1. 以输出为导向 :每学完一个模块,做一个小项目。

  2. 记录与复盘 :将代码与心得同步到 GitHub / Notion。

  3. 学习闭环 :阅读论文 → 复现代码 → 写总结 → 分享。

  4. 参与社区 :LangChain 中文群、HuggingFace 论坛、知乎 AI 圈。

💬 写在最后

学习大模型,不只是“看懂论文”,更是“亲手造出能跑的模型”。

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值