题目链接http://lightoj.com/volume_showproblem.php?problem=1138
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input
3
1
2
5
Sample Output
Case 1: 5
Case 2: 10
Case 3: impossible
思路:找5的个数,二分搜答案
Code
#include<bits/stdc++.h>
#define LL long long
const int maxn = 0;
using namespace std;
int pan(int x)
{
int res=0;
while(x>=5)
{
x/=5;
res+=x;
}
return res;
}
int main()
{
int T,Case;
scanf("%d",&T);
for(Case = 1; Case<=T; Case++)
{
int n;
scanf("%d",&n);
int l=1,r=1000000000,mid;
while(l<r-2)
{
mid=(l+r)>>1;
if(pan(mid)>n)
r=mid+1;
else if(pan(mid)<n)
l=mid;
else
break;
}
mid-=mid%5;
if(pan(mid)!=n)
printf("Case %d: impossible\n",Case);
else
printf("Case %d: %d\n",Case,mid);
}
}