强化学习—— Trust Region Policy Optimization (TRPO算法)

本文详细介绍了TrustRegionPolicyOptimization (TRPO)算法,包括其核心原理:在给定旧策略θold的基础上,通过构建近似J(θ)的置信域L(θ|θold),在该区域内寻找优化后的策略θnew。内容涉及状态值函数、目标函数的蒙特卡洛近似和实际的优化步骤。

1 Trust Region Algorithm 置信域算法

problem:
θ ⋆ = a r g m a x θ J ( θ ) \theta^\star=\mathop{argmax}\limits_{\theta} J(\theta) θ=θargmaxJ(θ)
repeat:

  1. Approximation: 给定 θ o l d \theta_{old} θold, 构建 L ( θ ∣ θ o l d ) L(\theta|\theta_{old}) L(θθold)去近似 J ( θ ) J(\theta) J(θ),其中 θ \theta θ需要满足 θ o l d \theta_{old} θold的置信域,即 N ( θ o l d ) N(\theta_{old}) N(θold)
  2. Maximization: 在置信域内,求取优化后的 θ \theta θ θ n e w = a r g m a x θ ∈ N ( θ o l d ) L ( θ ∣ θ o l d ) \theta_{new}=\mathop{argmax}\limits_{\theta\in N(\theta_{old})}L(\theta|\theta_{old}) θnew=θN(θold)argmaxL(θθold)

2 Trust Region Policy Optimization (TRPO算法)

  • state-value function:
    V π ( s ) = ∑ a π ( a ∣ s ; θ ) Q ( s , a ) = E A   π [ Q π ( s , A ) ] V_{\pi}(s)=\sum_{a}\pi(a|s;\theta)Q(s,a)=E_{A~\pi}[Q_\pi(s,A)] Vπ(s)=aπ(as;θ)Q(s,a)=EA π[Qπ(s,A)]
  • objective function:
    J ( θ ) = E S [ V π ( S ) ] J(\theta)=E_S[V_\pi(S)] J(θ)=ES[Vπ(S)]
  • approximation:
    V π ( s ) = ∑ a π ( a ∣ s ; θ ) π ( a ∣ , s ; θ o l d ) ⋅ Q π ( s , a ) ⋅ π ( a ∣ s ; θ o l d ) = E A   π ( ⋅ ∣ s ; θ o l d ) [ π ( A ∣ s ; θ ) π ( A ∣ s ; θ o l d ) ⋅ Q π ( s , A ) ] V_\pi(s)=\sum_a\frac{\pi(a|s;\theta)}{\pi(a|,s;\theta_{old})}\cdot Q_\pi(s,a)\cdot \pi(a|s;\theta_{old})=E_{A~\pi(\cdot|s;\theta_{old})}[\frac{\pi(A|s;\theta)}{\pi(A|s;\theta_{old})}\cdot Q_\pi(s,A)] Vπ(s)=
### 回答1: (TRPO)Trust Region Policy Optimization (TRPO) 是一种用于强化学习算法,它通过限制策略更新的步长,以确保每次更新都不会使策略变得太差。TRPO 是一种基于梯度的方法,它通过最大化期望收益来优化策略。TRPO 的主要优点是它可以保证每次更新都会使策略变得更好,而不会使其变得更差。 ### 回答2: Trust Region Policy OptimizationTRPO)是一种用于优化强化学习策略的算法TRPO通过在每次更新策略时限制更新量,来解决策略优化中的非线性优化问题。其目标是在保证策略改进的同时,尽量减小策略更新带来的影响。 TRPO的核心思想是在每次迭代中保持一个信任区域,该区域内的策略改进之后的表现要比当前策略好。通过限制策略更新的KL散度(Kullback-Leibler Divergence),TRPO保证了平稳的、逐步改进的过程。 TRPO算法步骤如下:首先,通过采样数据来估计策略的梯度;其次,通过求解一个约束优化问题来计算策略更新的方向和大小;最后,采用线搜索来确定在保证改进的前提下,策略更新的步长。 TRPO相对于其他的策略优化算法有几个优点。首先,TRPO可以高效地利用采样数据,避免了需求大量样本的问题。其次,通过控制策略更新的幅度,TRPO可以保持算法的稳定性和鲁棒性。最后,TRPO可以应用于各种不同类型的强化学习任务,并取得不错的性能。 总之,Trust Region Policy Optimization 是一种通过限制策略更新的KL散度来优化强化学习策略的算法。其核心思想是在每次迭代中维持一个信任区域,通过约束优化问题来计算策略更新,并使用线搜索来确定更新步长。TRPO具有高效利用采样数据,保持稳定性和适应性强的优点,能够在不同任务中取得良好性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值