Pytorch(二) —— 激活函数、损失函数及其梯度

本文介绍了PyTorch中常用的激活函数,包括Sigmoid、Tanh、ReLU和Softmax,以及它们的导数。接着讲解了MSE和CrossEntropy两种损失函数,并通过示例展示了如何使用PyTorch实现。最后,探讨了求导和反向传播的过程,演示了如何计算梯度并应用反向传播更新权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.激活函数

1.1 Sigmoid / Logistic

δ ( x ) = 1 1 + e − x δ ′ ( x ) = δ ( 1 − δ ) \delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta) δ(x)=1+ex1δ(x)=δ(1δ)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.sigmoid(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.2 Tanh

t a n h ( x ) = e x − e − x e x + e − x ∂ t a n h ( x ) ∂ x = 1 − t a n h 2 ( x ) tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\\frac{\partial tanh(x)}{\partial x}=1-tanh^2(x) tanh(x)=ex+exexexxtanh(x)=1tanh2(x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.tanh(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.3 ReLU

f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.relu(x)
plt.plot(x,y)
plt.show()

在这里插入图片描述

1.4 Softmax

p i = e a i ∑ k = 1 N e a k ∂ p i ∂ a j = { p i ( 1 − p j ) i = j − p i p j i ≠ j p_i=\frac{e^{a_i}}{\sum_{k=1}^N{e^{a_k}}}\\ \frac{\partial p_i}{\partial a_j}=\left\{ \begin{array}{lc} p_i(1-p_j) & i=j \\ -p_ip_j&i\neq j\\ \end{array} \right. pi=k=1Neakeaiajpi={pi(1pj)pipji=ji=j

import torch.nn.functional as F
logits = torch.rand(10)
prob = F.softmax(logits,dim=0)
print(prob)
tensor([0.1024, 0.0617, 0.1133, 0.1544, 0.1184, 0.0735, 0.0590, 0.1036, 0.0861,
        0.1275])

2.损失函数

2.1 MSE

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
mse = F.mse_loss(y,x@w)
print(mse)
tensor(238.5115)

2.2 CorssEntorpy

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,10)
y = torch.randint(0,9,[100])
entropy = F.cross_entropy(x@w,y)
print(entropy)
tensor(3.6413)

3. 求导和反向传播

3.1 求导

  • Tensor.requires_grad_()
  • torch.autograd.grad()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
w.requires_grad_()
mse = F.mse_loss(x@w,y)
grads = torch.autograd.grad(mse,[w])
print(grads[0].shape)
torch.Size([64, 1])

3.2 反向传播

  • Tensor.backward()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,10)
w.requires_grad_()
y = torch.randint(0,9,[100,])
entropy = F.cross_entropy(x@w,y)
entropy.backward()
w.grad.shape
torch.Size([64, 10])

by CyrusMay 2022 06 28

人生 只是 须臾的刹那
人间 只是 天地的夹缝
——————五月天(因为你 所以我)——————

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值