1. 策略学习
Policy Network
- 通过策略网络近似策略函数
π ( a ∣ s t ) ≈ π ( a ∣ s t ; θ ) π(a|s_t)≈π(a|s_t;\theta) π(a∣st)≈π(a∣st;θ) - 状态价值函数及其近似
V π ( s t ) = ∑ a π ( a ∣ s t ) Q π ( s t , a ) V_π(s_t)=\sum_aπ(a|s_t)Q_π(s_t,a) Vπ(st)=a∑π(a∣st)Qπ(st,a)
V ( s t ; θ ) = ∑ a π ( a ∣ s t ; θ ) ⋅ Q π ( s t , a ) V(s_t;\theta)=\sum_aπ(a|s_t;\theta)·Q_π(s_t,a) V(st;θ)=a∑π(a∣st;θ)⋅Qπ(st,a) - 策略学习最大化的目标函数
J ( θ ) = E S [ V ( S ; θ ) ] J(\theta)=E_S[V(S;\theta)] J(θ)=ES[V(S;θ)] - 依据策略梯度上升进行
θ ← θ + β ⋅ ∂ V ( s ; θ ) ∂ θ \theta\gets\theta+\beta·\frac{\partial V(s;\theta)}{\partial \theta} θ←θ+β⋅∂θ∂V(s;θ)
2. 策略梯度
Policy Gradient
∂ V ( s ; θ ) θ = ∑ a Q π ( s , a ) ∂ π ( a ∣ s ; θ ) ∂ θ = ∫ a Q π ( s , a ) ∂ π ( a ∣ s ; θ ) ∂ θ = ∑ a π ( a ∣ s ; θ ) ⋅ Q π ( s , a ) ∂ l n [ π ( a ∣ s ; θ ) ] ∂ θ = E A ∼ π ( a ∣ s ; θ ) [ Q π ( s , A ) ∂ l n [ π ( A ∣ s ; θ ) ] ∂ θ ] ≈ Q π ( s t , a t ) ∂ l n [ π ( a t ∣ s t ; θ ) ] ∂ θ \frac{\partial V(s;\theta)}{\theta}=\sum_a{Q_\pi(s,a)\frac{\partial\pi(a|s;\theta)}{\partial\theta}}\\=\int_a{Q_\pi(s,a)\frac{\partial\pi(a|s;\theta)}{\partial\theta}}\\=\sum_a{\pi(a|s;\theta)·Q_\pi(s,a)\frac{\partial ln[\pi(a|s;\theta)]}{\partial\theta}}\\=E_{A\sim\pi(a|s;\theta)}[Q_\pi(s,A)\frac{\partial ln[\pi(A|s;\theta)]}{\partial\theta}]\\≈Q_\pi(s_t,a_t)\frac{\partial ln[\pi(a_t|s_t;\theta)]}{\partial\theta} θ∂V(s;θ)=a∑Qπ(s,a)∂θ∂π(a∣s;θ)=∫aQπ(s,a)∂θ∂π(a∣s;θ)=a∑π(a∣s;θ)⋅Qπ(s,a)∂θ∂ln[π(a∣s;θ)]=EA∼π(a∣s;θ)[Qπ(s,A)∂θ∂ln[π(A∣s;θ)]]≈Qπ(st,at)∂θ∂ln[π(at∣st;θ)]
- 观测得到状态
s t s_t st - 依据策略函数随机采样动作
a t = π ( a t ∣ s t ; θ ) a_t = \pi(a_t|s_t;\theta) at=π(at∣st;θ) - 计算价值函数
q t = Q π ( s t , a t ) q_t = Q_\pi(s_t,a_t) qt=Qπ(st,at) - 求取策略网络的梯度
d θ , t = ∂ l n [ π ( a t ∣ s t ; θ ) ] ∂ θ ∣ θ = θ t d_{\theta,t}=\frac{\partial ln[\pi(a_t|s_t;\theta)]}{\partial\theta}|\theta=\theta_t dθ,t=∂θ∂ln[π(at∣st;θ)]∣θ=θt - 计算近似的策略梯度
g ( a t , θ t ) = q t ⋅ d θ , t g(a_t,\theta _t)=q_t·d_{\theta,t} g(at,θt)=qt⋅dθ,t - 更新策略网络
θ t + 1 = θ t + β ⋅ g ( a t , θ t ) \theta_{t+1}=\theta_t+\beta·g(a_t,\theta_t) θt+1=θt+β⋅g(at,θt)
3. 案例
目前没有好的方法近似动作价值函数,则未撰写案例。
by CyrusMay 2022 03 29
策略学习与策略梯度
本文介绍了强化学习中策略学习的基础概念,包括策略网络如何近似策略函数、状态价值函数的定义及其近似方法,并详细解释了策略梯度方法的工作原理,展示了如何利用策略梯度进行参数更新。
6680

被折叠的 条评论
为什么被折叠?



