leetcode 508. Most Frequent Subtree Sum

本文介绍了一种算法,用于找到二叉树中最频繁出现的子树和,并提供了两种实现方式。通过递归地计算每个节点的子树和,并使用HashMap来跟踪每个和的频率,最终返回最高频率的子树和值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given the root of a tree, you are asked to find the most frequent subtree sum. The subtree sum of a node is defined as the sum of all the node values formed by the subtree rooted at that node (including the node itself). So what is the most frequent subtree sum value? If there is a tie, return all the values with the highest frequency in any order.

Examples 1
Input:

  5
 /  \
2   -3
return [2, -3, 4], since all the values happen only once, return all of them in any order.
Examples 2
Input:

  5
 /  \
2   -5
return [2], since 2 happens twice, however -5 only occur once.

直观想法,递归求子树的和,然后用HashMap存放键值对,存放过程中,记录最大出现次数,然后遍历map。没想到提交有89%,有一个top answer也是这样!真粗暴!

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
import java.util.Map.Entry; 

public class Solution {
    int maxF = 1;
    public int[] findFrequentTreeSum(TreeNode root) {
        HashMap<Integer, Integer> map = new HashMap<>();
        int tp = subTreeSum(root, map);
        ArrayList<Integer> res = new ArrayList<>();
        for(Entry<Integer, Integer> entry: map.entrySet()){
            int key = entry.getKey();
            int val = entry.getValue();
            if(val==maxF){
                res.add(key);
            }
        }
        int[] resA = new int[res.size()];
        for(int i = 0; i< res.size(); i++){
            resA[i] = res.get(i);
        }
        return resA;
    }

    public int subTreeSum(TreeNode root, HashMap<Integer, Integer> map){
        if(root==null) return 0;
        int left = subTreeSum(root.left, map);
        int right = subTreeSum(root.right, map);

        int sum = root.val + left + right;
        if(map.containsKey(sum)) {
            int val = map.get(sum);
            val ++;
            if(val > maxF) maxF = val;
            map.put(sum, val);
        }else{
            map.put(sum, 1);
        }
        return sum;
    }
}

附上别人的

Verbose Java solution, postOrder traverse, HashMap (18ms)
For sake of saving time during contest, can't write so concise solution :)
Idea is post-order traverse the tree and get sum of every sub-tree, put sum to count mapping to a HashMap. Then generate result based on the HashMap.

public class Solution {
    Map<Integer, Integer> sumToCount;
    int maxCount;

    public int[] findFrequentTreeSum(TreeNode root) {
        maxCount = 0;
        sumToCount = new HashMap<Integer, Integer>();

        postOrder(root);

        List<Integer> res = new ArrayList<>();
        for (int key : sumToCount.keySet()) {
            if (sumToCount.get(key) == maxCount) {
                res.add(key);
            }
        }

        int[] result = new int[res.size()];
        for (int i = 0; i < res.size(); i++) {
            result[i] = res.get(i);
        }
        return result;
    }

    private int postOrder(TreeNode root) {
        if (root == null) return 0;

        int left = postOrder(root.left);
        int right = postOrder(root.right);

        int sum = left + right + root.val;
        int count = sumToCount.getOrDefault(sum, 0) + 1;
        sumToCount.put(sum, count);

        maxCount = Math.max(maxCount, count);

        return sum;
    }
}

这里有个写法可以简化我的[哭]

int count = sumToCount.getOrDefault(sum, 0) + 1;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值