Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 44105 Accepted Submission(s): 16599
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
Author
Ignatius.L
Recommend
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1061
题目大意:
正整数n,求出n^n的最右边的数字。
解题思路:
每次用个位乘,这个就不说了,要乘n次,直接循环会超时,很容易想到递归思想,深搜即可。
代码如下:
#include <cstdio>
#include <cstring>
int n,x;
int dfs(int cnt)
{
if(cnt==1)
return x;
else if(cnt%2==0)
{
int nx=dfs(cnt/2)*dfs(cnt/2);
return nx%10;
}
else
{
int nx=dfs(cnt/2)*dfs(cnt/2)*x;
return nx%10;
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
x=n%10;
printf("%d\n",dfs(n));
}
return 0;
}