数据集分享 | 电子元件检测数据集

部署运行你感兴趣的模型镜像

【导读】

在自动化装配和电路诊断日益普及的今天,电子元件识别成为智能制造中的关键一环。尤其在PCBA检测、元器件回溯与缺陷分析等场景中,如何精准定位、识别电路板上的多类别元器件,是决定系统鲁棒性和生产效率的关键。本文将介绍一个专为电子板元件检测任务打造的高质量数据集,覆盖23类常见电子元件,搭配真实工况采集与精细化标注,为开发者提供坚实的训练与验证基座。


电子板元件检测数据集

在电子制造行业中,电路板的功能依赖于众多元件协同工作,因此元器件的识别与分类不仅是电路板缺陷检测的前提,更是质量控制、BOM核对与自动化检测流程中的核心任务。

不同于传统只关注缺陷的检测任务,本数据集聚焦于元器件级别的精准检测与定位,具备如下亮点:

  • 图像数量:共计672张高清电路板图像,包含多种真实产品与器件布局

  • 标签类别:覆盖23类常见电子元件,包括:Button, Capacitor, Capacitor Jumper, Clock, Connector, Diode, EM, Electrolytic Capacitor, Ferrite Bead, IC, Inductor, Jumper, Led, Pads, Pins, Resistor, Resistor Jumper, Resistor Network, Switch, Test Point, Transistor, Unknown Unlabeled, iC

  • 采集环境:图像均来自真实产线拍摄,具有复杂背景干扰、光照不均、多角度视角等挑战

  • 标注格式:采用YOLO、COCO格式,支持主流目标检测模型(如YOLOv8、Faster R-CNN、DETR等)

  • 适用任务:电路板元器件定位、自动装配检测、PCBA缺陷分析、自动光学检测(AOI)

  • 数据集预览

screenshot_2025-07-30_17-07-23.png

数据样例展示

元件之间往往紧密排列,且在不同工艺与生产批次中存在颜色、尺寸、布局的显著差异。该数据集的多样性与高分辨率特点,为检测模型提供了足够的学习空间与泛化能力。

结语

元器件识别虽看似基础,却是支撑整个智能制造链条不可或缺的环节。从自动装配,到故障检测,再到BOM对比和合规审查,电路板的元器件检测正变得越来越重要。本文分享的数据集提供了覆盖全面、标注细致的元件图像资源,为模型训练与部署提供了充足弹药。

而借助 Coovally 平台的自动化能力,企业与开发者可以大幅降低AI入门门槛,高效构建属于自己的智能视觉系统。现在就访问 Coovally,开启电子制造AI化的第一步吧!

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值