【数据科学赛】Cain’s Jawbone Murder Mystery #文本顺序识别 #$300

1934年发布的Cain's Jawbone是一个结合了谋杀悬疑与文学谜题的小说。本次挑战邀请参赛者使用NLP算法重新排列混乱的75页内容,揭示六起谋杀案的真相。截止日期为2022年12月31日。
部署运行你感兴趣的模型镜像

CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!

更多比赛信息见 CompHub主页


以下内容摘自比赛主页(点击文末阅读原文进入)

Part1赛题介绍

题目

Cain’s Jawbone Murder Mystery

举办平台

Zindi

主办方

Unbound

背景

In 1934 the Observer’s cryptic crossword compiler, Edward Powys Mathers (aka Torquemada), released a novel that was simultaneously a murder mystery and the most fiendishly difficult literary puzzle ever written. The pages have been printed in an entirely haphazard order, but it is possible – through logic and intelligent reading – to sort the pages into the only correct order, revealing six murder victims and their respective murderers.

Your job, as the puzzle solver, is to try to put 75 pages of Cain’s Jawbone into its correct order, using AI NLP algorithms.

Only four people have solved this extremely difficult puzzle, and no one has yet tried to use machine learning to solve it. This is not only a fitting challenge to try to see if modern technology can solve an older mystery, but it also gives the opportunity to test NLP algorithms on a much more dated language set, which hasn’t been done yet.

1934 年,Observer 神秘的填字游戏编辑器 Edward Powys Mathers(又名 Torquemada)出版了一部小说,它既是一部谋杀悬疑小说,也是有史以来最难解的文学谜题。这些页面以完全随意的顺序打印,但有可能——通过逻辑和智能阅读——将页面排序为唯一正确的顺序,揭示六名谋杀受害者和他们各自的凶手。

作为解谜者,你的工作是尝试使用 AI NLP 算法将 75 页的 Cain's Jawbone 放入正确的顺序。

只有四个人解决了这个极其困难的难题,还没有人尝试使用机器学习来解决它。这不仅是一个合适的挑战,试图看看现代技术是否可以解决一个古老的谜团,而且还提供了在更老旧的语言集上测试 NLP 算法。

Part2时间安排

Competition closes on 31 December 2022.

Final submissions must be received by 23:59 PM GMT.

We reserve the right to update the contest timeline if necessary.

Part3奖励机制

1st place: $300 USD

There are 2000 Zindi points for this challenge.

Part4赛题描述

The objective of this challenge is to create a machine learning algorithm to correct the order of the pages to solve the six murders in the book.

预测文本片段正确的顺序

Part5评价指标

The error metric for this competition is Accuracy.

 


您可能感兴趣的与本文相关的镜像

TensorFlow-v2.9

TensorFlow-v2.9

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值