【数据科学赛】WSDM Cup 2023 #百度出题 #搜索排序 #双赛道 #无偏学习 #预训练 #已开始 #$13,000

CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!

更多比赛信息见 CompHub主页[1] 或 点击文末_阅读原文_


以下内容摘录自比赛主页

图片

Part1赛题介绍

1题目

Task 1: Unbiased Learning for Web Search[2]

Task 2: Pre-training for Web Search[3]

2标签

搜索排序预训练无偏学习NDCG

3主办方

图片

4交流方式New!

由于这两场比赛缺少官方交流渠道,CompHub 首次尝试提供一个讨论的空间,方便对比赛感兴趣的各位进行交流。如果大家认为这种方式对大家有帮助或有改进建议,欢迎留言让我知道~

Task 1: Unbiased Learning for Web Search 交流链接 ↓

https://support.qq.com/products/449835/topic-detail/2354/

Task 2: Pre-training for Web Search 交流链接 ↓

https://support.qq.com/products/449835/topic-detail/2355/

另外,在CompHub主页中也能进入这两场比赛的交流空间:

图片

Part2时间安排

两个任务安排相同:

EventComplete Date
Oct 18 2022Website ready and training set available for download.
Nov 11 2022Intermediate test set release and intermediate submission starts.
Dec 11 2022Intermediate submission ends.
Dec 16 2022Intermediate leaderboard result announcement.
Dec 17 2022Final test set release and final submission starts.
Jan 11 2023Final submission ends.
Jan 15 2023Final leaderboard result announcement.
Jan 20 2023Invitations to top 6 teams on each sub-task for short papers.
Feb 15 2023Short paper deadline.
Feb 27- March 3 2023WSDM Cup conference presentation in person for top 3 teams on each

Part3奖励机制

两个任务安排相同:

  • Champion: One team ($2000)

  • Runner-up: One team ($1000)

  • 3rd-place: One team ($500)

For those top 3 teams, we will sponsor for one conference registration ($1000) each team.

Part4赛题描述

Task 1: Unbiased Learning for Web Search

You are required to train a ranking model with the Large Scale Web Search Session Data.

The submission is not limited to the PaddlePaddle and Pre-trained Models.

Task 2: Pre-training for Web Search

You are required to pre-train a PLM with the Large Scale Web Search Session Data and finetune the PLM with the Expert Annotation Dataset

The award will only be honored to the top-3 results that use PaddlePaddle in the leaderboard.

Part5数据描述

Large Scale Web Search Session Data

Qid, Query, Query Reformulation
Pos 1, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
Pos 2, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
......
Pos N, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
# SERP is the abbreviation of search result page.


Expert Annotation Dataset

图片

Part6评测标准

DCG@10


参考资料

[1]

CompHub主页: https://comphub.notion.site/CompHub-c353e310c8f84846ace87a13221637e8

[2]

Task 1: Unbiased Learning for Web Search: https://aistudio.baidu.com/aistudio/competition/detail/534/0/introduction

[3]

Task 2: Pre-training for Web Search: https://aistudio.baidu.com/aistudio/competition/detail/536/0/introduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值