CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!
更多比赛信息见 CompHub主页[1] 或 点击文末_阅读原文_
以下内容摘录自比赛主页

Part1赛题介绍
1题目
Task 1: Unbiased Learning for Web Search[2]
Task 2: Pre-training for Web Search[3]
2标签
搜索排序、预训练、无偏学习、NDCG
3主办方

4交流方式New!
由于这两场比赛缺少官方交流渠道,CompHub 首次尝试提供一个讨论的空间,方便对比赛感兴趣的各位进行交流。如果大家认为这种方式对大家有帮助或有改进建议,欢迎留言让我知道~
Task 1: Unbiased Learning for Web Search 交流链接 ↓
https://support.qq.com/products/449835/topic-detail/2354/
Task 2: Pre-training for Web Search 交流链接 ↓
https://support.qq.com/products/449835/topic-detail/2355/
另外,在CompHub主页中也能进入这两场比赛的交流空间:

Part2时间安排
两个任务安排相同:
| Event | Complete Date |
|---|---|
| Oct 18 2022 | Website ready and training set available for download. |
| Nov 11 2022 | Intermediate test set release and intermediate submission starts. |
| Dec 11 2022 | Intermediate submission ends. |
| Dec 16 2022 | Intermediate leaderboard result announcement. |
| Dec 17 2022 | Final test set release and final submission starts. |
| Jan 11 2023 | Final submission ends. |
| Jan 15 2023 | Final leaderboard result announcement. |
| Jan 20 2023 | Invitations to top 6 teams on each sub-task for short papers. |
| Feb 15 2023 | Short paper deadline. |
| Feb 27- March 3 2023 | WSDM Cup conference presentation in person for top 3 teams on each |
Part3奖励机制
两个任务安排相同:
-
Champion: One team ($2000)
-
Runner-up: One team ($1000)
-
3rd-place: One team ($500)
For those top 3 teams, we will sponsor for one conference registration ($1000) each team.
Part4赛题描述
Task 1: Unbiased Learning for Web Search
You are required to train a ranking model with the Large Scale Web Search Session Data.
The submission is not limited to the PaddlePaddle and Pre-trained Models.
Task 2: Pre-training for Web Search
You are required to pre-train a PLM with the Large Scale Web Search Session Data and finetune the PLM with the Expert Annotation Dataset
The award will only be honored to the top-3 results that use PaddlePaddle in the leaderboard.
Part5数据描述
Large Scale Web Search Session Data
Qid, Query, Query Reformulation
Pos 1, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
Pos 2, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
......
Pos N, URL MD5, Title, Abstract, Multimedia Type, Click, -, -, Skip, SERP Height, Displayed Time, Displayed Time Middle, First Click, Displayed Count, SERP's Max Show Height, Slipoff Count After Click, Dwelling Time , Displayed Time Top, SERP to Top , Displayed Count Top, Displayed Count Bottom, Slipoff Count, -, Final Click, Displayed Time Bottom, Click Count, Displayed Count, -, Last Click , Reverse Display Count, Displayed Count Middle, -
# SERP is the abbreviation of search result page.
Expert Annotation Dataset

Part6评测标准
DCG@10
参考资料
[1]
CompHub主页: https://comphub.notion.site/CompHub-c353e310c8f84846ace87a13221637e8
[2]
Task 1: Unbiased Learning for Web Search: https://aistudio.baidu.com/aistudio/competition/detail/534/0/introduction
[3]
Task 2: Pre-training for Web Search: https://aistudio.baidu.com/aistudio/competition/detail/536/0/introduction
1027

被折叠的 条评论
为什么被折叠?



