目录
决策树
1 概述
1.1 决策树是如何工作的
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各 种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。
我们来简单了解一下决策树是如何工作的。决策树算法的本质是一种图结构,我们只需要问一系列问题就可以对数 据进行分类了。比如说,来看看下面这组数据集,这是一系列已知物种以及所属类别的数据:
我们现在的目标是,将动物们分为哺乳类和非哺乳类。那根据已经收集到的数据,决策树算法为我们算出了下面的 这棵决策树:
假如我们现在发现了一种新物种Python,它是冷血动物,体表带鳞片,并且不是胎生,我们就可以通过这棵决策 树来判断它的所属类别。
可以看出,在这个决策过程中,我们一直在对记录的特征进行提问。最初的问题所在的地方叫做根节点,在得到结 论前的每一个问题都是中间节点,而得到的每一个结论(动物的类别)都叫做叶子节点。
关键概念:节点
根节点:没有进边,有出边。包含最初的,针对特征的提问。
中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
*子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
决策树算法的核心是要解决两个问题:
- 如何从数据表中找出最佳节点和最佳分枝?
- 如何让决策树停止生长,防止过拟合?
几乎所有决策树有关的模型调整方法,都围绕这两个问题展开。这两个问题背后的原理十分复杂,我们会在讲解模 型参数和属性的时候为大家简单解释涉及到的部分。在这门课中,我会尽量避免让大家太过深入到决策树复杂的原 理和数学公式中(尽管决策树的原理相比其他高级的算法来说是非常简单了),这门课会专注于实践和应用。如果 大家希望理解更深入的细节,建议大家在听这门课之前还是先去阅读和学习一下决策树的原理。
1.2 sklearn中的决策树
模块sklearn.tree
sklearn中决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:
tree.DecisionTreeClassifier |
分类树 |
tree.DecisionTreeRegressor |
回归树 |
tree.export_graphviz |
将生成的决策树导出为DOT格式,画图专用 |
tree.ExtraTreeClassifier |
高随机版本的分类树 |
tree.ExtraTreeRegressor |
高随机版本的回归树 |
我们会主要讲解分类树和回归树,并用图像呈现给大家。
sklearn的基本建模流程
在那之前,我们先来了解一下sklearn建模的基本流程。
在这个流程下,分类树对应的代码是:
from sklearn import tree #导入需要的模块
clf = tree.DecisionTreeClassifier() #实例化
clf = clf.fit(X_train,y_train) #用训练集数据训练模型
result = clf.score(X_test,y_test) #导入测试集,从接口中调用需要的信息
2 DecisionTreeClassifier与红酒数据集
2.1 重要参数
criterion
为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标 叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心 大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是 说,在同一棵决策树上,叶子节点的不纯度一定是最低的。
Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择: 1)输入”entropy“,使用信息熵(Entropy)
- 输入”gini“,使用基尼系数(Gini Impurity)
- 输入”gini“,使用基尼系数(Gini Impurity)
其中t代表给定的节点,i代表标签的任意分类,代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,