A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than or equal to the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=1000) which is the size of the input sequence. Then given in the next line are the N integers in [-1000 1000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
评价::用静态链表和动态链表都可以做啦,记录每个节点的深度即可,但是我这个用的似乎静态链表的变种,我自己的风格。
代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<stack>
#include<algorithm>
#include<cstring>
using namespace std;
int n;
struct node
{
int data;
int l,r;
}p[1005];
void insert(int root,int x)
{
if(p[x].data<=p[root].data)
{
if(p[root].l==-1)
p[root].l=x;
else
insert(p[root].l,x);
}
else
{
if(p[root].r==-1)
p[root].r=x;
else
insert(p[root].r,x);
}
}
int deep[1005];
int maxDeep=0;
void findD(int root)
{
if(p[root].l!=-1)
{
deep[p[root].l]=deep[root]+1;
maxDeep=max(maxDeep,deep[root]+1);
findD(p[root].l);
}
if(p[root].r!=-1)
{
deep[p[root].r]=deep[root]+1;
maxDeep=max(maxDeep,deep[root]+1);
findD(p[root].r);
}
}
int n1=0,n2=0;
void dfs(int root)
{
if(root==-1)
return;
if(deep[root]==maxDeep)
n1++;
if(deep[root]==maxDeep-1)
n2++;
dfs(p[root].l);
dfs(p[root].r);
}
int main()
{
cin>>n;
cin>>p[1].data;
p[1].l=p[1].r=-1;
for(int i=2;i<=n;i++)
{
cin>>p[i].data;
p[i].l=p[i].r=-1;
insert(1,i);
}
deep[1]=0;
findD(1);
dfs(1);
printf("%d + %d = %d",n1,n2,n1+n2);
return 0;
}