常用方法
4、获取元素
获取元素,根据目标key所在桶的第一个元素的不同采用不同的方式获取元素,关键点在于find()方法的重写。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
// 如果元素所在的桶存在且里面有元素
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果第一个元素就是要找的元素,直接返回
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
// hash小于0,说明是树或者正在扩容
// 使用find寻找元素,find的寻找方式依据Node的不同子类有不同的实现方式
return (p = e.find(h, key)) != null ? p.val : null;
// 遍历整个链表寻找元素
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
(1)hash到元素所在的桶;
(2)如果桶中第一个元素就是该找的元素,直接返回;
(3)如果是树或者正在迁移元素,则调用各自Node子类的find()方法寻找元素;
(4)如果是链表,遍历整个链表寻找元素;
(5)获取元素没有加锁;
5、删除元素
删除元素跟添加元素一样,都是先找到元素所在的桶,然后采用分段锁的思想锁住整个桶,再进行操作。
public V remove(Object key) {
// 调用替换节点方法
return replaceNode(key, null, null);
}
final V replaceNode(Object key, V value, Object cv) {
// 计算hash
int hash = spread(key.hashCode());
// 自旋
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
// 如果目标key所在的桶不存在,跳出循环返回null
break;
else if ((fh = f.hash) == MOVED)
// 如果正在扩容中,协助扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 标记是否处理过
boolean validated = false;
synchronized (f) {
// 再次验证当前桶第一个元素是否被修改过
if (tabAt(tab, i) == f) {
if (fh >= 0) {
// fh>=0表示是链表节点
validated = true;
// 遍历链表寻找目标节点
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
// 找到了目标节点
V ev = e.val;
// 检查目标节点旧value是否等于cv
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
// 如果value不为空则替换旧值
e.val = value;
else if (pred != null)
// 如果前置节点不为空
// 删除当前节点
pred.next = e.next;
else
// 如果前置节点为空
// 说明是桶中第一个元素,删除之
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
// 遍历到链表尾部还没找到元素,跳出循环
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
// 如果是树节点
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
// 遍历树找到了目标节点
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
// 检查目标节点旧value是否等于cv
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
// 如果value不为空则替换旧值
p.val = value;
else if (t.removeTreeNode(p))
// 如果value为空则删除元素
// 如果删除后树的元素个数较少则退化成链表
// t.removeTreeNode(p)这个方法返回true表示删除节点后树的元素个数较少
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
// 如果处理过,不管有没有找到元素都返回
if (validated) {
// 如果找到了元素,返回其旧值
if (oldVal != null) {
// 如果要替换的值为空,元素个数减1
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
// 没找到元素返回空
return null;
}
(1)计算hash;
(2)如果所在的桶不存在,表示没有找到目标元素,返回;
(3)如果正在扩容,则协助扩容完成后再进行删除操作;
(4)如果是以链表形式存储的,则遍历整个链表查找元素,找到之后再删除;
(5)如果是以树形式存储的,则遍历树查找元素,找到之后再删除;
(6)如果是以树形式存储的,删除元素之后树较小,则退化成链表;
(7)如果确实删除了元素,则整个map元素个数减1,并返回旧值;
(8)如果没有删除元素,则返回null;
总结
(1)ConcurrentHashMap是HashMap的线程安全版本;
(2)ConcurrentHashMap采用(数组 + 链表 + 红黑树)的结构存储元素;
(3)ConcurrentHashMap相比于同样线程安全的HashTable,效率要高很多;
(4)ConcurrentHashMap采用的锁有 synchronized,CAS,自旋锁,分段锁,volatile等;
(5)ConcurrentHashMap中没有threshold和loadFactor这两个字段,而是采用sizeCtl来控制;
(6)sizeCtl = -1,表示正在进行初始化;
(7)sizeCtl = 0,默认值,表示后续在真正初始化的时候使用默认容量;
(8)sizeCtl > 0,在初始化之前存储的是传入的容量,在初始化或扩容后存储的是下一次的扩容门槛;
(9)sizeCtl = (resizeStamp << 16) + (1 + nThreads),表示正在进行扩容,高位存储扩容邮戳,低位存储扩容线程数加1;
(10)更新操作时如果正在进行扩容,当前线程协助扩容;
(11)更新操作会采用synchronized锁住当前桶的第一个元素,这是分段锁的思想;
(12)整个扩容过程都是通过CAS控制sizeCtl这个字段来进行的,这很关键;
(13)迁移完元素的桶会放置一个ForwardingNode节点,以标识该桶迁移完毕;
(14)元素个数的存储也是采用的分段思想,类似于LongAdder的实现;
(15)元素个数的更新会把不同的线程hash到不同的段上,减少资源争用;
(16)元素个数的更新如果还是出现多个线程同时更新一个段,则会扩容段(CounterCell);
(17)获取元素个数是把所有的段(包括baseCount和CounterCell)相加起来得到的;
(18)查询操作是不会加锁的,所以ConcurrentHashMap不是强一致性的;
(19)ConcurrentHashMap中不能存储key或value为null的元素;

本文深入解析ConcurrentHashMap的内部实现机制,包括其采用的数据结构、线程安全的保证方式、元素的增删查操作流程及锁机制等核心内容。
798

被折叠的 条评论
为什么被折叠?



