算法--最长回文子串

本文介绍了两种高效算法来寻找给定字符串中的最长回文子串。第一种是暴力求解,通过列举所有子串并检查其是否为回文来找出最长的回文子串。第二种是中心扩散法,从每个字符作为中心点向两边扩散,直到不再形成回文,这种方法更高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
回文串的定义:正着和反着读一样,那我们是不是把原来的字符串倒置了,然后找最长的公共子串就可以了。例如 S = “caba” ,S = “abac”,最长公共子串是 “aba”,所以原字符串的最长回文串就是 “aba”。

作者:windliang
链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-bao-gu/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

示例

示例 1: 输入: “babad” 输出: “bab” 注意: “aba” 也是一个有效答案。

示例 2: 输入: “cbbd” 输出: “bb”

分析

方法1.暴力求解,列举所有的子串,判断是否为回文串,保存最长的回文串。
方法2.中心扩散法(参考)。
从每一个位置出发,向两边扩散即可。遇到不是回文的时候结束。举个例子,str = acdbbdaa我们需要寻找从第一个 b(位置为 33)出发最长回文串为多少。怎么寻找?
首先往左寻找与当期位置相同的字符,直到遇到不相等为止。
然后往右寻找与当期位置相同的字符,直到遇到不相等为止。
最后左右双向扩散,直到左和右不相等。如下图所示:
在这里插入图片描述
每个位置向两边扩散都会出现一个窗口大小(len)。如果 len>maxLen(用来表示最长回文串的长度)。则更新 maxLen 的值。
因为我们最后要返回的是具体子串,而不是长度,因此,还需要记录一下 maxLen 时的起始位置(maxStart),即此时还要 maxStart=len。

简单实现

1.暴力破解

    public boolean isPalindromic(String s) {
		int len = s.length();
		for (int i = 0; i < len / 2; i++) {
			if (s.charAt(i) != s.charAt(len - i - 1)) {
				return false;
			}
		}
		return true;
	}

// 暴力解法
    public String longestPalindrome(String s) {
        String ans = "";
        int max = 0;
        int len = s.length();
        for (int i = 0; i < len; i++)
         for (int j = i + 1; j <= len; j++) {
             String test = s.substring(i, j);
              if (isPalindromic(test) && test.length() > max) {
                ans = s.substring(i, j);
                max = Math.max(max, ans.length());
            }
        }
        return ans;
    }

2.中心扩散法

public String longestPalindrome1(String s) {

        if (s == null || s.length() == 0) {
            return "";
        }
        int strLen = s.length();
        int left = 0;
        int right = 0;
        int len = 1;
        int maxStart = 0;
        int maxLen = 0;

        for (int i = 0; i < strLen; i++) {
            left = i - 1;
            right = i + 1;
            while (left >= 0 && s.charAt(left) == s.charAt(i)) {
                len++;
                left--;
            }
            while (right < strLen && s.charAt(right) == s.charAt(i)) {
                len++;
                right++;
            }
            while (left >= 0 && right < strLen && s.charAt(right) == s.charAt(left)) {
                len = len + 2;
                left--;
                right++;
            }
            if (len > maxLen) {
                maxLen = len;
                maxStart = left;
            }
            len = 1;
        }
        return s.substring(maxStart + 1, maxStart + maxLen + 1);

    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值