6. 旋转数组的最小数字

本文介绍了一种在旋转数组中查找最小元素的高效算法。通过使用双指针法,可以在O(log n)的时间复杂度内找到旋转数组的最小值,特别讨论了处理数组元素重复的情况。
题目描述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。

解法: (1)我们用两个指针left,right分别指向数组的第一个元素和最后一个元素。按照题目的旋转的规则,第一个元素应该是大于最后一个元素的(没有重复的元素)。
但是如果不是旋转,第一个元素肯定小于最后一个元素。
(2)找到数组的中间元素。
中间元素大于第一个元素,则中间元素位于前面的递增子数组,此时最小元素位于中间元素的后面。我们可以让第一个指针left指向中间元素。
移动之后,第一个指针仍然位于前面的递增数组中。
中间元素小于第一个元素,则中间元素位于后面的递增子数组,此时最小元素位于中间元素的前面。我们可以让第二个指针right指向中间元素。
移动之后,第二个指针仍然位于后面的递增数组中。
这样查找范围就会一半一半的缩小。
(3)按照以上思路,第一个指针left总是指向前面递增数组的元素,第二个指针right总是指向后面递增的数组元素。
最终第一个指针将指向前面数组的最后一个元素,第二个指针指向后面数组中的第一个元素。
也就是说它们将指向两个相邻的元素,而第二个指针指向的刚好是最小的元素,这就是循环的结束条件。
到目前为止以上思路很耗的解决了没有重复数字的情况,这一道题目添加上了这一要求,有了重复数字。
因此这一道题目比上一道题目多了些特殊情况:
我们看一组例子:{1,0,1,1,1} 和 {1,1, 1,0,1} 都可以看成是递增排序数组{0,1,1,1,1}的旋转。
这种情况下我们无法继续用上一道题目的解法,去解决这道题目。因为在这两个数组中,第一个数字,最后一个数字,中间数字都是1。
第一种情况下,中间数字位于后面的子数组,第二种情况,中间数字位于前面的子数组。
因此当两个指针指向的数字和中间数字相同的时候,我们无法确定中间数字1是属于前面的子数组还是属于后面的子数组,也就无法移动指针来缩小查找的范围,这个时候就要用顺序查找的方法。

import java.util.ArrayList;
public class Solution {
    public int minNumberInRotateArray(int [] array) {
        if(array.length == 0) return 0;
        
        int index1 = 0;
        int index2 = array.length - 1;
        int indexMid = index1;
        while(array[index1] >= array[index2]){
            if(index2 - index1 == 1){
                indexMid = index2;
                break;
            }
            
            indexMid = (index1 + index2) / 2;
            if(array[indexMid] >= array[index1])
                index1 = indexMid;
            else if(array[indexMid] <= array[index2])
                index2 = indexMid;
        }
        return array[indexMid];
    }
}
MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值