【LeetCode: 2580. 统计将重叠区间合并成组的方案数 + 合并区间】

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,优快云-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🚩 题目链接

⛲ 题目描述

给你一个二维整数数组 ranges ,其中 ranges[i] = [starti, endi] 表示 starti 到 endi 之间(包括二者)的所有整数都包含在第 i 个区间中。

你需要将 ranges 分成 两个 组(可以为空),满足:

每个区间只属于一个组。
两个有 交集 的区间必须在 同一个 组内。
如果两个区间有至少 一个 公共整数,那么这两个区间是 有交集 的。

比方说,区间 [1, 3] 和 [2, 5] 有交集,因为 2 和 3 在两个区间中都被包含。
请你返回将 ranges 划分成两个组的 总方案数 。由于答案可能很大,将它对 109 + 7 取余 后返回。

示例 1:

输入:ranges = [[6,10],[5,15]]
输出:2
解释:
两个区间有交集,所以它们必须在同一个组内。
所以有两种方案:

  • 将两个区间都放在第 1 个组中。
  • 将两个区间都放在第 2 个组中。
    示例 2:

输入:ranges = [[1,3],[10,20],[2,5],[4,8]]
输出:4
解释:
区间 [1,3] 和 [2,5] 有交集,所以它们必须在同一个组中。
同理,区间 [2,5] 和 [4,8] 也有交集,所以它们也必须在同一个组中。
所以总共有 4 种分组方案:

  • 所有区间都在第 1 组。
  • 所有区间都在第 2 组。
  • 区间 [1,3] ,[2,5] 和 [4,8] 在第 1 个组中,[10,20] 在第 2 个组中。
  • 区间 [1,3] ,[2,5] 和 [4,8] 在第 2 个组中,[10,20] 在第 1 个组中。

提示:

1 <= ranges.length <= 105
ranges[i].length == 2
0 <= starti <= endi <= 109

🌟 求解思路&实现代码&运行结果


⚡ 合并区间

🥦 求解思路
  1. ranges按照第一个维度进行升序排序,依次合并有交集的区间,合并方式为当前区间的开始位置是否大于上一个位置的最大结束位置,如果是大于,直接分属于俩个不同的区间,反之,如果不满足的话,更新当前要合并区间的最大右侧位置。
  2. 合并后共有k个大区间,每个大区间都可以分到第一个组或者第二个组,每个大区间都有 2个方案。由于不同的大区间之间互相独立,根据乘法原理,方案数为 2^k。
  3. 我们可以在每次确定当前俩个区间分属于不同的区间逻辑中,进行乘2的操作,同时进行取模的运算。
  4. 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {
    public int countWays(int[][] ranges) {
        Arrays.sort(ranges, (a, b) -> a[0] - b[0]);
        int ans = 1;
        int right = -1;
        for (int[] range : ranges) {
            if (range[0] > right) {
                ans = ans * 2 % 1_000_000_007;
            }
            right = Math.max(right, range[1]);
        }
        return ans;
    }
}

🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硕风和炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值