目录
基于引用的回收(Reference-based Eviction)
前言
Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] 、缓存 [caching] 、原生类型支持 [primitives support] 、并发库 [concurrency libraries] 、通用注解 [common annotations] 、字符串处理 [string processing] 、I/O 等等。 本文主要介绍其中的一个缓存相关的组件工具类CacheBuilder的使用方式。
引用的maven依赖,使用的是guava缓存机制
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>11.0.2</version>
</dependency>
CacheBuilder代码截图

使用示例代码举例
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.removalListener(MY_LISTENER)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) throws AnyException {
return createExpensiveGraph(key);
}
});
——————————————————
Cache<Object, Object> cache = CacheBuilder.newBuilder()
// 容量大小
.maximumSize(4)
// 设置内部哈希表的大小
.initialCapacity(16)
// 并发数
.concurrencyLevel(4)
// 开启统计功能
.recordStats()
// 设置一个remove监听器
.removalListener(new RemovalListener<Object, Object>() {
@Override
public void onRemoval(RemovalNotification<Object, Object> notification) {
// TODO
}
})
// 定时回收
.expireAfterAccess(30, TimeUnit.MINUTES)
.build();
——————————
public static void main(String[] args) throws ExecutionException, InterruptedException{
//缓存接口这里是LoadingCache,LoadingCache在缓存项不存在时可以自动加载缓存
LoadingCache<Integer,Student> studentCache
//CacheBuilder的构造函数是私有的,只能通过其静态方法newBuilder()来获得CacheBuilder的实例
= CacheBuilder.newBuilder()
//设置并发级别为8,并发级别是指可以同时写缓存的线程数
.concurrencyLevel(8)
//设置写缓存后8秒钟过期
.expireAfterWrite(8, TimeUnit.SECONDS)
//设置缓存容器的初始容量为10
.initialCapacity(10)
//设置缓存最大容量为100,超过100之后就会按照LRU最近虽少使用算法来移除缓存项
.maximumSize(100)
//设置要统计缓存的命中率
.recordStats()
//设置缓存的移除通知
.removalListener(new RemovalListener<Object, Object>() {
@Override
public void onRemoval(RemovalNotification<Object, Object> notification) {
System.out.println(notification.getKey() + " was removed, cause is " + notification.getCause());
}
})
//build方法中可以指定CacheLoader,在缓存不存在时通过CacheLoader的实现自动加载缓存
.build(
new CacheLoader<Integer, Student>() {
@Override
public Student load(Integer key) throws Exception {
System.out.println("load student " + key);
Student student = new Student();
student.setId(key);
student.setName("name " + key);
return student;
}
}
);
for (int i=0;i<20;i++) {
//从缓存中得到数据,由于我们没有设置过缓存,所以需要通过CacheLoader加载缓存数据
Student student = studentCache.get(1);
System.out.println(student);
//休眠1秒
TimeUnit.SECONDS.sleep(1);
}
System.out.println("cache stats:");
//最后打印缓存的命中率等 情况
System.out.println(studentCache.stats().toString());
}
CacheLoader加载
在使用缓存前,首先问自己一个问题:有没有合理的默认方法来加载或计算与键关联的值?如果有的话,你应当使用CacheLoader。如果没有,或者你想要覆盖默认的加载运算,同时保留"获取缓存-如果没有-则计算"[get-if-absent-compute]的原子语义,你应该在调用get时传入一个Callable实例。缓存元素也可以通过Cache.put方法直接插入,但自动加载是首选的,因为它可以更容易地推断所有缓存内容的一致性。
LoadingCache是附带CacheLoader构建而成的缓存实现。
创建自己的CacheLoader通常只需要简单地实现V load(K key) throws Exception方法。例如,你可以用下面的代码构建LoadingCache:
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumSize(1000)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) throws AnyException {
return createExpensiveGraph(key);
}
});
...
//获取本地缓存的数据
try {
return graphs.get(key);
} catch (ExecutionException e) {
throw new OtherException(e.getCause());
}
从LoadingCache查询的正规方式是使用get(K)方法。这个方法要么返回已经缓存的值,要么使用CacheLoader向缓存原子地加载新值。由于CacheLoader可能抛出异常,LoadingCache.get(K)也声明为抛出ExecutionException异常。如果你定义的CacheLoader没有声明任何检查型异常,则可以通过getUnchecked(K)查找缓存;但必须注意,一旦CacheLoader声明了检查型异常,就不可以调用getUnchecked(K)。
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.expireAfterAccess(10, TimeUnit.MINUTES)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
...
return graphs.getUnchecked(key);
缓存回收
一个残酷的现实是,我们几乎一定没有足够的内存缓存所有数据。你你必须决定:什么时候某个缓存项就不值得保留了?
Guava Cache提供了三种基本的缓存回收方式:基于容量回收、定时回收和基于引用回收。
基于容量的回收(size-based eviction)
如果要规定缓存项的数目不超过固定值,只需使用CacheBuilder.maximumSize(long),设置缓存大小。缓存将尝试回收最近没有使用或总体上很少使用的缓存项。
警告:在缓存项的数目达到限定值之前,缓存就可能进行回收操作。通常来说,这种情况发生在缓存项的数目逼近限定值时。
另外,不同的缓存项有不同的“权重”(weights)。例如,如果你的缓存值,占据完全不同的内存空间,你可以使用CacheBuilder.weigher(Weigher)指定一个权重函数,并且用CacheBuilder.maximumWeight(long)指定最大总重,并且不能和maximumSize一起使用。在权重限定场景中,除了要注意回收也是在重量逼近限定值时就进行了,还要知道重量是在缓存创建时计算的,因此要考虑重量计算的复杂度。
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumWeight(100000)
.weigher(new Weigher<Key, Graph>() {
public int weigh(Key k, Graph g) {
return g.vertices().size();
}
})
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) { // no checked exception
return createExpensiveGraph(key);
}
});
定时回收(Timed Eviction)
CacheBuilder提供两种定时回收的方法:
- expireAfterAccess(long, TimeUnit):缓存项在给定时间内没有被读/写访问,则回收。请注意这种缓存的回收顺序和基于大小回收一样。
- expireAfterWrite(long, TimeUnit):缓存项在给定时间内没有被写访问(创建或覆盖),则回收。如果认为缓存数据总是在固定时候后变得陈旧不可用,这种回收方式是可取的。
基于引用的回收(Reference-based Eviction)
通过使用弱引用的键、或弱引用的值、或软引用的值,Guava Cache可以把缓存设置为允许垃圾回收:
- CacheBuilder.weakKeys():使用弱引用存储键。当键没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用键的缓存用==而不是equals比较键。
- CacheBuilder.weakValues():使用弱引用存储值。当值没有其它(强或软)引用时,缓存项可以被垃圾回收。因为垃圾回收仅依赖恒等式(==),使用弱引用值的缓存用==而不是equals比较值。
- CacheBuilder.softValues():使用软引用存储值。软引用只有在响应内存需要时,才按照全局最近最少使用的顺序回收。考虑到使用软引用的性能影响,我们通常建议使用更有性能预测性的缓存大小限定(见上文,基于容量回收)。使用软引用值的缓存同样用==而不是equals比较值。
显式清除缓存数据
任何时候,你都可以显式地清除缓存项,而不是等到它被回收:
- 个别清除:Cache.invalidate(key)
- 批量清除:Cache.invalidateAll(keys)
- 清除所有缓存项:Cache.invalidateAll()
移除监听器
通过CacheBuilder.removalListener(RemovalListener),你可以声明一个监听器,以便缓存项被移除时做一些额外操作。缓存项被移除时,RemovalListener会获取移除通知[RemovalNotification],其中包含移除原因[RemovalCause]、键和值。
请注意,RemovalListener抛出的任何异常都会在记录到日志后被丢弃[swallowed]。
CacheLoader<Key, DatabaseConnection> loader = new CacheLoader<Key, DatabaseConnection> () {
public DatabaseConnection load(Key key) throws Exception {
return openConnection(key);
}
};
RemovalListener<Key, DatabaseConnection> removalListener = new RemovalListener<Key, DatabaseConnection>() {
public void onRemoval(RemovalNotification<Key, DatabaseConnection> removal) {
DatabaseConnection conn = removal.getValue();
conn.close(); // tear down properly
}
};
return CacheBuilder.newBuilder()
.expireAfterWrite(2, TimeUnit.MINUTES)
.removalListener(removalListener)
.build(loader);
警告:默认情况下,监听器方法是在移除缓存时同步调用的。因为缓存的维护和请求响应通常是同时进行的,代价高昂的监听器方法在同步模式下会拖慢正常的缓存请求。在这种情况下,你可以使用RemovalListeners.asynchronous(RemovalListener, Executor)把监听器装饰为异步操作。
统计数据
CacheBuilder.recordStats()用来开启Guava Cache的统计功能。统计打开后,Cache.stats()方法会返回CacheStats对象以提供如下统计信息:
- hitRate():缓存命中率;
- averageLoadPenalty():加载新值的平均时间,单位为纳秒;
- evictionCount():缓存项被回收的总数,不包括显式清除。
public final class CacheStats {
// 命中次数
private final long hitCount;
// miss次数
private final long missCount;
// 添加成功次数
private final long loadSuccessCount;
// 添加失败次数
private final long loadExceptionCount;
// 总负载时间
private final long totalLoadTime;
// 驱逐统计
private final long evictionCount;
.......
}
通过CacheStats.hitRate()方法获取命中率,计算方式:hitCount /(hitCount+missCount)
missRate()方法与此类似,计算方式:missCount /(hitCount+missCount)
此外,还有其他很多统计信息。这些统计信息对于调整缓存设置是至关重要的,在性能要求高的应用中我们建议密切关注这些数据。
本文详细介绍Guava库中的缓存组件CacheBuilder的使用方法,包括容量限制、定时回收、基于引用回收等策略,以及CacheLoader加载缓存、监听器使用和缓存统计等功能。
6381

被折叠的 条评论
为什么被折叠?



