题目大意:给定一个序列1,2,3,⋯ ,N1,2,3,\cdots,N1,2,3,⋯,N然后给一个数字M,计算该序列的子序列中加起来等于M的情况并输出。
输入:N和M。
输出:输出一个区间,该区间包含的子序列之和等于M,每种情况最后加上一个空行
方法:直接暴力求解会超时QAQ,所以需要用等差数列求和公式
由Sn=d2n2+(a1−d2)nS_n = \frac{d}{2}n^2 +(a_1 - \frac{d}{2})nSn=2dn2+(a1−2d)n 可以得到 a1=Sn−n(n−1)2na_1 = \frac{S_n-\frac{n(n-1)}{2}}{n}a1=nSn−2n(n−1)
每次只需要算出a1a_1a1然后再把a1a_1a1带入到公式中看是否相等就可以了,并且由等差数列公式可以知道1<=n<=2Sn1<=n<=\sqrt{2S_n}1<=n<=2Sn
/*
*
*Problem Description
*Given a sequence 1,2,3,......N, your job is to calculate all the possible sub-sequences that the sum of the sub-sequence is M.
*
*
*Input
*Input contains multiple test cases. each case contains two integers N, M( 1 <= N, M <= 1000000000).input ends with N = M = 0.
*
*
*Output
*For each test case, print all the possible sub-sequence that its sum is M.The format is show in the sample below.print a blank line after each test case.
*
*
*Sample Input
*20 10
*50 30
*0 0
*
*
*Sample Output
*[1,4]
*[10,10]
*
*[4,8]
*[6,9]
*[9,11]
*[30,30]
*
*
*Author
*8600
*
*
*Source
*校庆杯Warm Up
*
*
*Recommend
*linle
*
*/
#include<iostream>
using namespace std;
int main() {
int N, M, temp;
while (cin >> N >> M) {
if (N == 0 && M == 0) break;
for (int i = sqrt(2 * M); i >= 1; --i) {
temp = (M - (i - 1)*i / 2) / i;
if (temp*i + (i - 1)*i / 2 == M) {
printf("[%d,%d]\n", temp, temp + i - 1);
}
}
cout << endl;
}
system("pause");
return 0;
}