【强化学习】常用算法之一 “Q-learning”

本文深入介绍了Q-learning,一种强化学习中的无模型学习方法,基于贝尔曼方程进行决策策略优化。文章详细阐述了Q-learning的发展历史、算法公式、工作原理,并提供了Python代码示例,展示了如何在迷宫环境中应用Q-learning。此外,还讨论了算法的功能和适用场景,以及其在高维和连续状态空间中的挑战。

 

作者主页:爱笑的男孩。的博客_优快云博客-深度学习,活动,python领域博主爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.youkuaiyun.com/Code_and516?type=blog个人简介:打工人。

持续分享:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com 

        强化学习(Reinforcement Learning, RL)是机器学习的一种重要分支,其目标是让机器通过交互环境,获得最大的回报。强化学习的实现需要考虑如何制定行动规划,以达到某种回报最大化的目标。Q-learning算法是强化学习中最常用的算法之一。

本文将详细讲解强化学习中常用算法之一“Q-learning”


目录

一、简介:

二、发展史:

三、算法公式:

四、算法讲解:

五、算法功能:

六、示例代码:

运行结果:

七、总结:


一、简介:

        Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。

        Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。

二、发展史:

        Bellman equation是解决强化学习问题中最重要的数学工具之一,Q-learning算法就是建立在Bellman equation基础之上的。具体来说,在1957年中,R.E. Bellman将强化学习问题建议为最优控制问题,并提出了Bellman equation来求解这个问题。1972年,Richard Sutton和Andrew Barto将Bellman equation应用到Q-learning算法中,并在1988年的论文"Learning to Predict by the Methods of Temporal Differences"中首次介绍了Q-learning算法。

三、算法公式:

        Q-learning算法主要基于最优Q值函数和贝尔曼方程来进行预测和探索,其核心是要求最优Q值函数,其定义如下:

        其中s和a分别是状态和动作,γ是折扣因子,rt+1​是时间步t+1的奖励值。我们的目标是求解出Q∗(s,a)的值。 

        接下来,我们可以借助贝尔曼方程来更新Q值函数:

        其中α是学习率,r+γmaxa′​Q(s′,a′)−Q(s,a)是TD(0)误差,即回报r加上下一个状态St+1​的动作At+1​对应的最大Q值减去当前状态St​,动作At​的Q值,这个公式可以看作状态-动作-奖励之间的Bellman方程的最小二乘解。

四、算法讲解:

        Q-learning算法的核心价值函数Q的更新方程主要基于两个关键概念,TD(0)误差和贝尔曼方程。Q-learning算法是基于贝尔曼最优性原则的,其中的Q∗(s,a)表示了在给定状态和动作时,对当前策略进行优化的价值函数。通过计算Q∗(s,a),我们可以设计智能体与环境交互的策略,也可以求出最优策略。

        具体来说,Q-learning算法的流程可以分为以下步骤:

  1. 初始化Q值函数为随机值
  2. 与环境交互,在每个时间步tt,选择当前状态st​中一个可用的动作at​,执行这
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱笑的男孩。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值