Darknet19详细原理(含tensorflow版源码)

Darknet19是一个用于图像分类和检测的卷积神经网络,常作为YOLOv2的基础。网络结构包括卷积层、池化层和批量归一化层,以平衡计算速度和精度。文章提供了Darknet19的详细结构,并给出了基于TensorFlow的实现代码,用于训练猫狗分类数据集。

Darknet19原理

        Darknet19是一个轻量级的卷积神经网络,用于图像分类和检测任务。 它是YOLOv2目标检测算法的主干网络,它的优点在于具有较少的参数和计算量,在计算速度和精度之间取得了良好的平衡,同时在训练过程中也具有较高的准确率和收敛速度。

        Darknet19主要由卷积层、池化层和批量归一化层组成。根据名称可以看出,这些层是计算密集型的,且在网络的后端叠加了几个全连接层来输出预测,网络结构如下:

        输入层:输入尺寸为224x224x3的图像。

        卷积层1:使用32个3x3的卷积核,步长为1,填充为2,激活函数为ReLU。

        池化层1:使用2x2的最大池化,步长为2,不进行填充。

        卷积层2:使用64个3x3的卷积核,步长为1,填充为1,激活函数为ReLU。

        池化层2:使用2x2的最大池化,步长为2,不进行填充。

        卷积层3:使用128个3x3的卷积核,步长为1,填充为1,激活函数为ReLU。

        卷积层4:使用64个1x1的卷积核,步长为1,填充为0,激活函数为ReLU。

        卷积层5:使用128个3x3的卷积核,步长为1,填充为1,激活函数为ReLU。

        池化层3:使用2x2的最大池化,步长为2,不进行填充。

        卷积层6:使用256个3x3的卷积核,步长为1,填充为1,激活函数为ReLU。

        卷积层7:使用128个1x1的卷积核,步长为1,填充为0,激活函数为ReLU。

        卷积层8:使用256个3x3

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱笑的男孩。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值