1012 Largest Point
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 4804 Accepted Submission(s): 881
Problem Description
Given the sequence A
with n
integers t1,t2,⋯,tn.
Given the integral coefficients a
and b.
The fact that select two elements ti
and tj
of A
and i≠j
to maximize the value of at2i+btj,
becomes the largest point.
Input
An positive integer T,
indicating there are T
test cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106). The second line contains n integers t1,t2,⋯,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for all cases would not be larger than 5×106.
Output
The output contains exactly
T
lines.
For each test case, you should output the maximum value of at2i+btj.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3
Sample Output
Case #1: 20 Case #2: 0
#include <bits/stdc++.h>
#define LL long long
using namespace std;
LL t[5000010];
typedef struct node
{
LL data;
int id;
bool operator <(const node &x)const
{
return data > x.data;
}
} FF;
FF L[5000010],R[5001000];
int main()
{
int T,n,a,b;
int cas = 0;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&a,&b);
for(int i=0; i<n; i++)
{
scanf("%lld",&t[i]);
L[i].data = t[i] * t[i] * a;
R[i].data = t[i] * b;
L[i].id = i;
R[i].id = i;
}
sort(L,L+n);
sort(R,R+n);
LL ans;
if(L[0].data > R[0].data)
{
ans = L[0].data;
if(L[0].id != R[0].id)
ans += R[0].data;
else
ans += R[1].data;
}
else
{
ans = R[0].data;
if(L[0].id != R[0].id)
ans += L[0].data;
else
ans += L[1].data;
}
printf("Case #%d: %lld\n",++cas,ans);
}
return 0;
}
1006 Fang Fang
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 4656 Accepted Submission(s): 986
Problem Description
Fang Fang says she wants to be remembered.
I promise her. We define the sequence F of strings.
F0 = ‘‘f",
F1 = ‘‘ff",
F2 = ‘‘cff",
Fn = Fn−1 + ‘‘f", for n > 2
Write down a serenade as a lowercase string S in a circle, in a loop that never ends.
Spell the serenade using the minimum number of strings in F, or nothing could be done but put her away in cold wilderness.
I promise her. We define the sequence F of strings.
F0 = ‘‘f",
F1 = ‘‘ff",
F2 = ‘‘cff",
Fn = Fn−1 + ‘‘f", for n > 2
Write down a serenade as a lowercase string S in a circle, in a loop that never ends.
Spell the serenade using the minimum number of strings in F, or nothing could be done but put her away in cold wilderness.
Input
An positive integer T,
indicating there are T
test cases.
Following are T lines, each line contains an string S as introduced above.
The total length of strings for all test cases would not be larger than 106.
Following are T lines, each line contains an string S as introduced above.
The total length of strings for all test cases would not be larger than 106.
Output
The output contains exactly
T
lines.
For each test case, if one can not spell the serenade by using the strings in F, output −1. Otherwise, output the minimum number of strings in F to split S according to aforementioned rules. Repetitive strings should be counted repeatedly.
For each test case, if one can not spell the serenade by using the strings in F, output −1. Otherwise, output the minimum number of strings in F to split S according to aforementioned rules. Repetitive strings should be counted repeatedly.
Sample Input
8 ffcfffcffcff cffcfff cffcff cffcf ffffcffcfff cffcfffcffffcfffff cff cffc
Sample Output
Case #1: 3 Case #2: 2 Case #3: 2 Case #4: -1 Case #5: 2 Case #6: 4 Case #7: 1 Case #8: -1HintShift the string in the first test case, we will get the string "cffffcfffcff" and it can be split into "cffff", "cfff" and "cff".
#include <bits/stdc++.h>
using namespace std;
char s[1000000+10];
int pos[1000000+10];
int e;
int main()
{
int tg;
scanf("%d%*c", &tg);
int len, i, j;
int cnt=1;
while(tg--)
{
gets(s);
len=strlen(s);
if(len==0)
{
printf("Case #%d: 0\n",cnt++);
continue;
}
bool ss=true;
for(i=0; i<len; i++)
{
if(s[i]!='c' && s[i]!='f')
{
ss=false;
break;
}
}
if(ss==false)
{
printf("Case #%d: -1\n", cnt++);
continue;
}
bool ok=false;
e=0;
for(i=0; i<len; i++)
{
if(s[i]=='c')
{
ok=true;
pos[e++]=i;
}
}
if(ok==false)
{
if(len%2==0)
printf("Case #%d: %d\n", cnt++, len/2);
else
printf("Case #%d: %d\n", cnt++, len/2+1);
}
else
{
if(e*2 > (len-e) )
printf("Case #%d: -1\n", cnt++);
else
{
pos[e]=len+pos[0];
bool z=true;
for(i=0; i<e; i++)
{
if(pos[i+1]-pos[i]<=2)
{
z=false;
break;
}
}
if(z==false)
printf("Case #%d: -1\n", cnt++);
else
printf("Case #%d: %d\n", cnt++, e);
}
}
}
return 0;
}