poj 2965 The Pilots Brothers' refrigerator

本文介绍了一个基于矩阵操作的游戏谜题解决方案。玩家需通过切换冰箱门上16个把手的状态来打开冰箱,每次操作会影响一行一列的所有把手。文章提供了一段C++代码,实现了寻找最少操作次数及具体操作序列的功能。
                                                                                                                       The Pilots Brothers' refrigerator
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 20362 Accepted: 7844 Special Judge

Description

The game “The Pilots Brothers: following the stripy elephant” has a quest where a player needs to open a refrigerator.

There are 16 handles on the refrigerator door. Every handle can be in one of two states: open or closed. The refrigerator is open only when all handles are open. The handles are represented as a matrix 4х4. You can change the state of a handle in any location [i, j] (1 ≤ i, j ≤ 4). However, this also changes states of all handles in row i and all handles in column j.

The task is to determine the minimum number of handle switching necessary to open the refrigerator.

Input

The input contains four lines. Each of the four lines contains four characters describing the initial state of appropriate handles. A symbol “+” means that the handle is in closed state, whereas the symbol “−” means “open”. At least one of the handles is initially closed.

Output

The first line of the input contains N – the minimum number of switching. The rest N lines describe switching sequence. Each of the lines contains a row number and a column number of the matrix separated by one or more spaces. If there are several solutions, you may give any one of them.

Sample Input

-+--
----
----
-+--

Sample Output

6
1 1
1 3
1 4
4 1
4 3
4 4
/*
**实际这个题与1753非常类似,只是在1753代码基础上加上几步处理
*/
#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

bool vis[5][5] = {{false}};
bool flag = false;
int step;
int xx[16],yy[16];

bool Judge()
{
    for(int i=1;i<=4;i++)
    {
        for(int j=1;j<=4;j++)
        {
            if(!vis[i][j])
            return false;
        }
    }
    return true;
}

void Flip(int x,int y)
{
    vis[x][y] = !vis[x][y];
    for(int i=1;i<=4;i++)
    {
        vis[x][i] = !vis[x][i];
        vis[i][y] = !vis[i][y];
    }
}
void DFS(int x,int y,int deep)
{
    if(deep == step)
    {
        flag = Judge();
        return ;
    }
    if(flag || y == 5)
        return ;
    Flip(x,y);
    xx[deep] = x;
    yy[deep] = y;
    if(x < 4)
        DFS(x+1,y,deep+1);
    else
        DFS(1,y+1,deep+1);
    Flip(x,y);
    if(x < 4)
        DFS(x+1,y,deep);
    else
        DFS(1,y+1,deep);
}

int main()
{
 //   freopen("in.txt","r",stdin);
    char ch;
    for(int i=1; i<=4; i++)
    {
        for(int j=1; j<=4; j++)
        {
            cin>>ch;
            if(ch == '-')
                vis[i][j] = true;
        }
    }
    for(step=1; step<=16; step++)
    {
        DFS(1,1,0);
        if(flag)
            break;
    }
    cout<<step<<endl;
    for(int i=0; i<step; i++)
        cout<<xx[i]<<" "<<yy[i]<<endl;
    return 0;
}


内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值