差分约束基础

本文介绍了如何使用差分约束系统解决最短路和最长路问题。对于<=形式的不等式,通过构建图并寻找最短路径来确定变量的最大值;对于>=形式的不等式,则通过寻找最长路径来确定变量的最小值。文章还讨论了无解情况及任意解的存在条件。

差分约束建图方法

①:对于差分不等式,a - b <= c ,建一条 b 到 a 的权值为 c 的边,求的是最短路,得到的是最大值
②:对于不等式 a - b >= c ,建一条 b 到 a 的权值为 c 的边,求的是最长路,得到的是最小值

对于求最短路来说:

①:存在负环的话是无解
②:求不出最短路(dist[ ]没有得到更新)的话是任意解
(最长路时可以类比这两条结论);

或是

1.对于一个全部都是<=号的不等式组,我们可以将每个式子转化为Xi<=Xj+W(i,j),那么就建一条边,Xj->Xi=W(i,j),然后利用最短路径解决问题,在x0定死的情况下,求得最小值

2.对于一个全部都是>=号的不等式组,我们可以将每个式子转化为Xi>=Xj+W(i,j),那么就建一条边,Xj->Xi=W(i,j),然后利用最长路径解决问题,在x0定死的情况下,求得最大值

如果dis[Xi]为inf或-inf,那么Xi为任意解

可以结合例题看一看WikiOI 1242 布局(差分约束基础) CodeOnce的博客

参考了许浩泽大神的博客的内容,感谢
wikioi1242 布局 Jackleg的博客

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值