思路来源
https://www.cnblogs.com/zwfymqz/p/8425731.html
板子整理
1.CRT
中国剩余定理,利用逆元构造同余方程组的一个解,
要求方程组模数之间互质,x==c[i](mod m[i])
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll extgcd(ll a,ll b,ll &x,ll &y)
{
ll d=a;
if(b)d=extgcd(b,a%b,y,x),y-=(a/b)*x;
else x=1,y=0;
return d;
}
ll mul(ll u,ll v,ll p)
{
return (u*v-(ll)((long double)u*v/p)*p+p)%p;
}
ll modpow(ll x,ll n,ll mod)
{
ll res=1;
for(;n;n/=2,x=mul(x,x,mod)%mod)
if(n&1)res=mul(res,x,mod)%mod;
return res;
}
ll CRT(ll r[],ll m[],int n)//x==r(mod m)方程组 共n项
{
ll ans=0,M=1,x,y;
for(int i=1;i<=n;++i)
M*=m[i];
for(int i=1;i<=n;++i)
{
ll mi=M/m[i];
extgcd(mi,m[i],x,y);
x=(x%m[i]+m[i])%m[i];
ans=(ans+mul(mul(r[i],mi,M),x,M))%M;
}
return (ans+M)%M;
}
2.扩展CRT
每次两两合并,扩展欧几里得构造合并后的方程的一个解
不需要模数之间互质,有解的充要条件与扩展欧几里得的有解充要条件相同
longlong+快速乘的板子交题迷之wa,只好换成__int128
#include<iostream>
#include<cstdio>
#include<map>
#define LL __int128
using namespace std;
typedef long long ll;
const int MAXN = 1e6+10;//最大方程数
LL p,q;
LL K, C[MAXN], M[MAXN], x, y;
LL gcd(LL a, LL b)
{
return b == 0 ? a : gcd(b, a % b);
}
LL exgcd(LL a, LL b, LL &x, LL &y)
{
if (b == 0) {x = 1, y = 0; return a;}
LL r = exgcd(b, a % b, x, y), tmp;
tmp = x; x = y; y = tmp - (a / b) * y;
return r;
}
LL inv(LL a, LL b)
{
LL r = exgcd(a, b, x, y);
while (x < 0) x += b;
return x;
}
LL excrt(LL K)
{
for (LL i = 1; i <= K; i++)
{
scanf("%lld%lld",&p, &q);//x==c[i](mod m[i])
M[i]=p; C[i]=q;
}
bool flag = 1;
for (LL i = 2; i <= K; i++)
{
LL M1 = M[i - 1], M2 = M[i], C2 = C[i], C1 = C[i - 1], T = gcd(M1, M2);
if ((C2 - C1) % T != 0) {flag = 0; break;}
M[i] = (M1 * M2) / T;
C[i] = ( inv( M1 / T , M2 / T ) * (C2 - C1) / T ) % (M2 / T) * M1 + C1;
C[i] = (C[i] % M[i] + M[i]) % M[i];
}
return flag ? C[K] : -1;
}
int main()
{
while (~scanf("%lld", &K))
printf("%lld\n",(ll)(excrt(K)));
return 0;
}