洛谷P10282 [USACO24OPEN] Smaller Averages G(归并排序优化dp)

题目

思路来源

乱搞ac

题解

由于k不是固定的,所以不用记录k,只需每次往上续上一段即可

容易想到O(n^4)的做法,就是枚举a的最后一段,b的最后一段,

只要这最后一段对应合法,续在前面的合法方案后就可以了

然后考虑怎么优化这个O(n^4),还是dp[i][j]表示第一段以i结尾、第二段以j结尾的合法方案

枚举x<i,枚举y<j,[x,i]区间与[y,j]区间一共是O(n)个的,

可以先预处理它们的平均值的排序,O(n^2logn),

然后对两堆有序的再进行归并排序,这样复杂度就是O(n^3)的了

思想是这个思想,但是注意到,如果直接这样枚举的话,

转移的时候,dp[i][j]要从dp[x-1][y-1]转移过来,这两维都不是固定的,实际无法完成归并

所以,要把第一维固定成i,这样才能对第二维进行归并,

所以,枚举x>i,枚举y<j,对区间[i,x]和区间[y,j]进行归并,

不妨按平均值从大到小归并,这样可以把所有平均值大的dp[i-1][y-1]

加到当前dp[x][j]上,保证了变量同时只会有一维

代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<map>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef pair<int,int> P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<<x<<" ";
#define dbg2(x) cerr<<(#x)<<":"<<x<<endl;
#define SZ(a) (int)(a.size())
#define sci(a) scanf("%d",&(a))
#define pt(a) printf("%d",a);
#define pte(a) printf("%d\n",a)
#define ptlle(a) printf("%lld\n",a)
#define debug(...) fprintf(stderr, __VA_ARGS__)
const int N=505,mod=1e9+7;
int n,a[N],b[N],sum[N],sum2[N],dp[N][N];
vector<int>p[N],q[N];
void add(int &x,int y){
    x=(x+y)%mod;
}
int main(){
    sci(n);
    rep(i,1,n){
        sci(a[i]);
        sum[i]=sum[i-1]+a[i];
    }
    rep(i,1,n){
        rep(j,i,n){
            p[i].pb(j);
        }
        sort(p[i].begin(),p[i].end(),[&](int x,int y){
            return 1ll*(sum[x]-sum[i-1])*(y-i+1)>1ll*(sum[y]-sum[i-1])*(x-i+1);//[i,x] [i,y]
        });
    }
    rep(i,1,n){
        sci(b[i]);
        sum2[i]=sum2[i-1]+b[i];
        rep(j,0,i-1){
            q[i].pb(j);
        }
        sort(q[i].begin(),q[i].end(),[&](int x,int y){
            return 1ll*(sum2[i]-sum2[x])*(i-y)>1ll*(sum2[i]-sum2[y])*(i-x);//(x,i] (y,i] 1ll*(sum[i]-sum[x])/(i-x)<1ll*(sum[i]-sum[y])/(i-y)
        });
    }
    dp[0][0]=1;
    rep(i,1,n){
        rep(j,1,n){//(i,j) 对于固定y i伸出去一段 用于固定左端点 j缩进来一段 dp值已知
            int p1=0,p2=0,now=0;
            while(p1<SZ(p[i]) && p2<SZ(q[j])){
                int x=p[i][p1],y=q[j][p2];
                if(1ll*(sum[x]-sum[i-1])*(j-y)<=1ll*(sum2[j]-sum2[y])*(x-i+1)){//[i,x] [y+1,j] 固定i和j
                    add(now,dp[i-1][y]);
                    p2++;
                }
                else{
                    add(dp[x][j],now);
                    p1++;
                }
                //printf("i:%d j:%d now:%d p1:%d p2:%d x:%d y:%d\n",i,j,now,p1,p2,x,y);
            }
            while(p1<SZ(p[i])){
                int x=p[i][p1];
                add(dp[x][j],now);
                p1++;
            }
            //printf("i:%d j:%d dp:%d\n",i,j,dp[i][j]);
        }
    }
    pte(dp[n][n]);
    return 0;
}

<think>题目:P1700 [USACO19OPEN] Milk Factory B 题目描述:有一个牛奶加工厂,有N个站点(编号1到N),站点之间有传送带,传送带是单向的。现在要找一个站点,使得从这个站点出发,能够到达所有其他站点(允许通过传送带间接到达)。如果存在多个这样的站点,则选择编号最小的。如果没有这样的站点,则输出-1。 输入格式: 第一行:整数N(1≤N≤100),表示站点的数量。 接下来N-1行:每行两个整数a和b,表示有一条从a到b的传送带(注意是单向边,方向是a->b)。 输出格式: 输出满足条件的站点编号,如果没有则输出-1。 分析: 题目要求找到一个点,使得从这个点出发可以到达所有其他点。实际上,这就是在图中寻找一个“根”节点,使得从该节点出发可以遍历整个图(注意图是有向的,且边数为N-1,所以图是树?但注意:题目中并没有保证是树,因为可能有多个父节点?但题目只给了N-1条边,所以实际上是一个有向图,且边数比节点数少1,因此它可能是一个有向无环图(DAG)或者有环?但题目没有说,不过N-1条边,如果有环则无法形成连通图(因为树是无环的),但这里是有向图,所以可能形成树或者森林?然而题目要求能够到达所有其他站点,所以图必须是连通的(弱连通?)。 注意:题目中只给出了N-1条边,所以整个图是一个有向图,且边数比节点数少1,那么它可能是一棵有向树(但方向不一定是从根向叶子,因为题目输入是a->b,所以可能是从a指向b)。但是,题目没有保证边的方向是从根向叶子,所以我们需要考虑。 由于图只有N-1条边,所以整个图可能是一个有向无环图(DAG)并且是一棵树(即基图是一棵树,但方向任意)。但注意:树中边的方向通常是从根向叶子,但这里可能反过来?所以我们需要判断。 然而,题目要求的是:存在一个点,从它出发可以到达所有其他点。那么我们可以尝试对每一个点进行DFS/BFS,检查从这个点出发能否遍历所有节点。因为N最大为100,所以对每个点做一次DFS/BFS,总时间复杂度为O(N*(N+E)) = O(100*(100+99)) ≈ 100*200 = 20000,可以接受。 步骤: 1. 读入N。 2. 构建图:使用邻接表。 3. 对于每个节点i(从1到N),执行BFS/DFS,记录从i出发能够访问到的节点数。 4. 如果能够访问到所有N个节点(包括自己),则记录这个节点。 5. 在记录的所有节点中,选择编号最小的输出;如果没有,输出-1。 注意:图是有向的,所以边a->b,只能从a到b,不能反向。 代码实现: 我们将使用BFS,因为BFS使用队列,非递归,且对于100个节点来说很安全。 具体步骤: 1. 读入N,然后读入N-1行,每行两个整数a和b,构建有向边:graph[a].push_back(b) (注意:题目中传送带方向是a->b)。 2. 对于每个节点i(1~N): 初始化visited数组(大小为N+1,全部为false),初始化队列,将i入队,标记visited[i]=true。 然后进行BFS:每次从队列中取出一个节点u,遍历u的所有邻居v,如果v没有被访问过,则标记并加入队列。 统计访问过的节点数(count)。 3. 如果count等于N,则说明节点i满足条件。 4. 遍历完所有节点后,如果存在满足条件的节点,输出最小的节点编号;否则输出-1。 注意:可能存在多个满足条件的节点,我们只需要最小的那个,所以一旦找到一个满足条件的节点,我们可以记录它的编号,然后继续找,最后取最小的(或者我们按节点编号从小到大遍历,那么第一个满足条件的节点就是最小的,但题目要求多个时取最小,所以我们可以按节点编号从小到大遍历,找到第一个满足条件的就输出并退出?不行,因为可能有多个,但我们需要最小的,所以即使找到一个,后面可能有更小的?不对,节点编号是从1到N,我们从小到大遍历,所以第一个满足条件的节点就是最小的节点?不对,因为节点编号是1,2,...,N,我们按节点编号顺序遍历,那么第一个满足条件的节点就是最小的节点吗?但是,我们遍历的顺序是1,2,...,N,所以当我们找到第一个满足条件的节点时,它一定是编号最小的(因为编号小的先遍历)。所以我们可以这样:从1到N遍历,一旦找到一个节点满足条件,就记录答案并跳出循环?不行,因为可能节点1不满足,节点2满足,但节点3也满足,而节点2比节点3小,所以我们应该记录所有满足条件的节点?然后取最小值?或者因为我们是按从小到大的顺序遍历,所以第一个满足条件的节点就是最小的?不对,因为节点1满足条件,那么它就是最小的;节点1不满足,节点2满足,那么节点2就是当前最小的;节点3满足条件但是比节点2大,所以我们在遍历到节点2时就可以记录并继续找更小的?不对,因为节点编号是递增的,后面不会出现比2更小的节点了。所以当我们按节点编号从小到大遍历时,第一个满足条件的节点就是最小的节点,可以直接输出并结束?不对,因为可能节点1不满足,节点2满足,然后节点3也满足,但是节点2比节点3小,所以我们在节点2满足时就可以输出节点2并结束循环(因为后面节点编号都比2大,所以最小的就是2)。因此,我们可以按节点编号从小到大遍历,一旦遇到一个满足条件的节点,就输出它并结束程序(因为后面即使有满足条件的节点,编号也更大,所以第一个满足条件的节点就是最小的)。如果没有遇到,最后输出-1。 但是,如果我们从1到N遍历,那么第一个满足条件的节点就是最小的,所以我们可以: for (int i=1; i<=N; i++) { 进行BFS,统计从i出发能到达的节点数count if (count == N) { cout << i << endl; return 0; // 结束程序 } } // 如果循环结束还没找到 cout << -1 << endl; 这样是可行的。 但是,注意:题目要求是“如果存在多个这样的站点,则选择编号最小的”,而我们的遍历顺序是1到N,所以第一个找到的满足条件的节点就是最小的,然后直接输出并结束程序。 代码实现: 注意:图可能有环吗?题目中只有N-1条边,所以不可能有环(因为环的存在需要至少与节点数相同的边数,比如一个环需要n条边,而这里只有n-1条边),所以图是无环的,因此不会出现重复访问的问题(但我们的BFS已经用visited数组避免重复访问了,所以即使有环也没关系)。 但是,图可能是不连通的吗?题目要求能够到达所有站点,所以如果图不连通,那么任何一个节点出发都不可能到达所有节点。所以我们的BFS在某个节点开始,如果访问的节点数不足N,就跳过。 由于边数只有N-1,所以整个图可能是一个有向树(基图是无向树,但边有方向)。但是,方向可能不是从根向叶子,所以可能有些节点有多个入度?题目没有说,所以按照输入处理。 我们按照上述思路编写代码。 注意:输入是N-1行,每行两个整数a和b,表示a->b的边。 代码示例:</think>### 解法思路 对于P1700 [USACO19OPEN] Milk Factory B 问题,需要找到一个站点(节点),使得从该站点出发能通过单向传送带到达所有其他站点。由于图只有 N-1 条边(树形结构),可能存在多个解,需输出编号最小的解,若无解则输出 -1。 #### 关键点 1. **图建模**:将站点视为节点,传送带视为有向边(a→b)。 2. **连通性检查**:对每个节点进行 BFS/DFS,检查是否能访问所有节点。 3. **最优选择**:从小到大遍历节点,找到第一个满足条件的节点即可(因编号递增)。 ### C++ 代码实现 ```cpp #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; int main() { int N; cin >> N; vector<vector<int>> graph(N + 1); // 邻接表(索引0不使用) // 构建有向图(注意:共N-1条边) for (int i = 0; i < N - 1; i++) { int a, b; cin >> a >> b; graph[a].push_back(b); // 添加边 a→b } // 检查每个节点作为起点 for (int start = 1; start <= N; start++) { vector<bool> visited(N + 1, false); // 访问标记数组 queue<int> q; int count = 0; // 统计可达节点数 // BFS初始化 q.push(start); visited[start] = true; while (!q.empty()) { int u = q.front(); q.pop(); count++; // 遍历当前节点的所有出边 for (int v : graph[u]) { if (!visited[v]) { visited[v] = true; q.push(v); } } } // 若可达所有节点,输出并结束 if (count == N) { cout << start << endl; return 0; } } // 无解情况 cout << -1 << endl; return 0; } ``` ### 代码解释 1. **输入处理**: - 读取站点数 `N`。 - 构建邻接表 `graph`,存储每条有向边(`a→b` 对应 `graph[a].push_back(b)`)。 2. **BFS遍历**: - 对每个节点 `start` (1 到 N) 进行 BFS: - 初始化 `visited` 数组记录访问状态。 - 使用队列 `q` 进行广度优先搜索,统计可达节点数 `count`。 - 若 `count == N`,说明从 `start` 可达所有节点,输出 `start` 并结束程序。 3. **无解处理**: - 若遍历完所有节点均未找到解,输出 `-1`。 ### 复杂度分析 - **时间复杂度**:O(),最坏情况下对每个节点进行 BFS(每个节点遍历所有边)。 - **空间复杂度**:O(N),用于存储邻接表和访问标记。 ### 相关问题
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小衣同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值