别再收藏了!这篇提示词终极指南,现在就看,马上就能用!

前言

你在写prompt时候,是不是总觉得大模型它不听话。要么答非所问、要么一堆废话。扒开思考过程仔细阅读时而觉得它聪明绝顶,时而又觉得它愚蠢至极。明明已经对了怎么又推理到错的地方去了,明明在提示词中提醒过了不要这么思考它怎么就瞎想了。这也许就是每一个Prompt Engineer的困扰。怎么能让模型按照要求去思考。

长提示词到底应该怎么写,有没有方法可以一次命中,找到那个终极的提示词。 答案是否定的,一篇成功的长提示词总是要经历初始版本、调优、测试、再调优。不过这个过程中有规律可循,有方法可套。 以下就是被提示词反复捶打,经历无数痛苦经历后总结的一套提示词写作方案,保你可以得到满意的长提示词,让模型听话。

一、结构

也许你小某书、某站看过了各种提示词结构,比如:CRISE,BROKE,ICIO等等,这些框架当然是有很大价值的,在非精准类问题(精准类问题:数据查询分析,非精准类问题:文本解析,写作、翻译等)或者非复杂性问题上没有问题。在复杂性高的精准性问题上就没有那么有效了。我们这边一直探索的是大模型在数据分析场景的应用,对准确性要求极高,覆盖的场景也非常的复杂,经过探索和尝试,总结出来一套形式有效的提示词结构:

角色/任务 + 核心原则 + 上下文处理 + CoT(Chain of Thoughts) + 输出规范 + Few-Shot

还需要适当添加要求和限制,下面会以实战经验来讲解每一个模块应该怎么写。

二、写在前面

模型是接收Prompt的主体,同时也是写Prompt的高手,在初始版本和调优过程中也可以起到关键作用。

1.借助模型生成初始版本Prompt
  1. 准备query和期望输出的结果30条
  2. 准备上下文输出,和文本结构介绍
  3. 清晰描述模型要实现的目标以及输出的提示词框架

将以上内容给到大模型,可以快速得到初始版的提示词,比自己动手写第一版要有效的多。

2.借助模型优化Prompt
  1. 准备测试集以及当前prompt生成的结果
  2. 添加准确结果和备注,备注描述生成错误结果的原因

使用模型初始化和优化可以解决基础问题,真正的优化还是要靠自己。

3.Prompt格式

md或者json,我选择md格式。

不仅仅是因为md格式比较好看,主要是为你md格式结构清晰,撰写方便,而且拓展性很好。总结下来md是比较好的选择。

json格式虽然结构清晰,但是扩展性太差,写的太长了容易把自己搞晕,慎重选择。

三、Prompt模块

不同模块承担不同的作用,复杂程度不同需要的模块也不同。

角色&任务

角色辅助,讲清楚任务。 此部份在prompt最前面,是最高指令,告诉模型它是谁,要干嘛。

角色:模型本身是具备各领域知识能力的,解决当前具体问题需要调用模型哪方面的能力,是通过角色定位完成的。 你是一名牙科医生,你是一名数据分析师、你是一名川菜厨师等让模型从一个杂学家变成专业领域的科学家。

任务:一句话讲清楚模型要干嘛,数据分析师可以写sql查询数据、可以使用python分析数据、可以数据可视化,也可以写分析报告。

角色和任务约束模型调用某方面能力完成一个具体的事情。

核心原则

核心原则可以一开始就输出,也可以在调优过程中生成。 可以理解为模型执行任务时要遵守的最高原则,纲领性质的要求。所以核心准则不能多,3条以内,超过3条很容易就失效了。

比如在生成sql的prompt中,为了保证生成的sql可以查询出数据,就得有以下核心原则。

比如在做分词提取时,我们的分词倾向性也可以写在核心原则内

一开始实现某个任务时,核心原则可能还没有,在优化过程中有些问题在提示词主体中总是解决不了,可以考虑在核心原则中优化。对于模型来源核心原则会被考虑的权重是比较高的,仅次于角色和任务。

上下文处理

当前Context Engineering概念比Prompt Engineering更加流行,一句话概括就是让上下文以恰当的格式出现在恰当的位置,知识库可以包括:多论对话的长短记忆、知识库rag结果、提示词、工作流上游输出等。能让上下文发挥最大作用,就必须把上下文讲清楚,放对位置。

上下文模块组织原则:

  1. 上下文内容比较长,最好放到最后,以免打断提示词
  2. 上下文结构讲清楚,合适和组织形式影响token数量也会影响性能(不展开讲)
  3. 上下文在任务中承担的作用和价值

举例:在生成sql环节,上下文输入较多,具体组织形式如下:

上下文输入:一般放在提示词结尾处:

特别注意:上下文的结构和形式的优化一般适合提示词的优化协同的,二者同步优化才能达到最好的效果。

CoT(Chain of Thoughts)
CoT

CoT本来是提示词的一种框架,是针对逻辑比较强的任务场景提出的。就是要提醒或者约束模型按照要求思考,以提升准确率。

举个经典例子:小明有5个苹果,3个梨。妈妈拿走2个苹果,爸爸给了1个梨,小明拿1个梨和姐姐换了1个苹果,请问最终小明有几个苹果几个梨。

提示词1: 请回答最终小明有几个苹果几个梨; 这时候答案很有可能是错的。

提示词2: 第一步:将小明每次获取、失去、交换所有物品作为一个节点,奖整个过程按照节点切分成不同的计算任务 第二步:计算每一个节点结束后小明所有物品的数量 第三步:计算出最终的结果后复盘是否准确;这个时候模型就是一步一步计算结果,更容易得到正确的答案。

在复杂场景下,CoT,也可以理解为执行流程或者说思考过程,可以作为整个prompt一部份,模型在充分理解任务和上下文之后,再按照CoT步骤执行拆解任务,往往可以让模型按照要求执行,听话程度高出很多。我们的经验是可以提升准确了20个percent。

示例如下:维度解析

要求和限制

要求和限制,看是什么级别,可以写在CoT模块内,也可以单独一个模块,因地制宜即可。

要求和限制一般是任务中需要特殊强调、特殊处理的逻辑,建议二者分开写。举例:

特殊逻辑表达

在写prompt中有些逻辑用文字特别难以准确表达,有时候准确表达出来需要上百字,对于模型准确理解就更难了。 这个时候可以考虑使用伪代码来表达,模型理解起来既快又准。

比如,收入月报每月定稿时间13日,如何根据当前时间取出月表的最新时间,并考核时间的格式。

四、输出规范

模型太爱表达了,它往往不会只输出你想要的内容,总是输出很多自己的思考过程或者考虑的因素,以表达自己的聪明。又或者是不按照要求的格式输出,对输出的规范要求必不可少,一些平台可以实现结构化输出,不过结构化输出的基础是要模型能输出结构清晰的结构。

输出规范一般包含两部分内容:

  1. 期望输出的内容和结构
  2. 禁止输出的内容和结构

举例如下:

五、Few-Shot

提升准确率非常有效的手段,就好比一个应届生,你让他去看一个文件,然后按照文件要求做事,很难理解到位。 如果你再提供一两个例子,基本上聪明的同学就能很好的完成任务。 模型当然属于聪明的同学这一类。示例一定要按照上述CoT的过程来写,二者一致则能让模型最大限度的按照既定的要求思考。

举例如下:

写在最后

不同的模型、不同的场景也许写prompt的细节不尽相同,但整体的框架是相通的。按照这个框架,人人都可以写出满意的Promt! 以上分享来自腾讯CSIG磐石数据中心。在数据洪流时代,企业不缺数据,缺的是从数据中洞见未来的能力。CSIG磐石数据中心以领先的AI数据分析引擎,为您打造“会思考、能决策”的智能数据中枢!

那么,如何系统的去学习大模型LLM?

作为一名深耕行业的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值