# -*- coding: utf-8 -*-
import numpy as np
import random
from selenium.webdriver import ActionChains
import time
from selenium import webdriver
from PIL import Image
import os
from selenium.webdriver.support.ui import WebDriverWait
# opencv-python需要安装这个模块
import cv2
class Login(object):
"""
腾讯防水墙滑动验证码破解
使用OpenCV库
成功率大概90%左右:在实际应用中,登录后可判断当前页面是否有登录成功才会出现的信息:比如用户名等。循环
https://open.captcha.qq.com/online.html
破解 腾讯滑动验证码
腾讯防水墙
python + seleniuum + cv2
"""
def __init__(self):
# 如果是实际应用中,可在此处账号和密码
self.url = "https://open.captcha.qq.com/online.html"
self.driver = webdriver.Chrome()
@staticmethod
def show(name):
cv2.imshow('Show', name)
cv2.waitKey(0)
cv2.destroyAllWindows()
@staticmethod
def webdriverwait_send_keys(dri, element, value):
"""
显示等待输入
:param dri: driver
:param element:
:param value:
:return:
"""
WebDriverWait(dri, 10, 5).until(lambda dr: element).send_keys(value)
@staticmethod
def webdriverwait_click(dri, element):
"""
显示等待 click
:param dri: driver
:param element:
:return:
"""
WebDriverWait(dri, 10, 5).until(lambda dr: element).click()
@staticmethod
def get_postion(chunk, canves):
"""
判断缺口位置
:param chunk: 缺口图片是原图
:param canves:
:return: 位置 x, y
"""
otemp = chunk
oblk = canves
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)
# w, h = target.shape[::-1]
temp = 'temp.jpg'
targ = 'targ.jpg'
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
target = abs(255 - target)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
x, y = np.unravel_index(result.argmax(), result.shape)
return x, y
# # 展示圈出来的区域
# cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)
# cv2.imwrite("yuantu.jpg", template)
# show(template)
@staticmethod
def get_track(distance):
"""
模拟轨迹 假装是人在操作
:param distance:
:return:
"""
# 初速度
v = 0
# 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
t = 0.2
# 位移/轨迹列表,列表内的一个元素代表0.2s的位移
tracks = []
# 当前的位移
current = 0
# 到达mid值开始减速
mid = distance * 7 / 8
distance += 10 # 先滑过一点,最后再反着滑动回来
# a = random.randint(1,3)
while current < distance:
if current < mid:
# 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
a = random.randint(2, 4) # 加速运动
else:
a = -random.randint(3, 5) # 减速运动
# 初速度
v0 = v
# 0.2秒时间内的位移
s = v0 * t + 0.5 * a * (t ** 2)
# 当前的位置
current += s
# 添加到轨迹列表
tracks.append(round(s))
# 速度已经达到v,该速度作为下次的初速度
v = v0 + a * t
# 反着滑动到大概准确位置
for i in range(4):
tracks.append(-random.randint(2, 3))
for i in range(4):
tracks.append(-random.randint(1, 3))
return tracks
@staticmethod
def urllib_download(imgurl, imgsavepath):
"""
下载图片
:param imgurl: 图片url
:param imgsavepath: 存放地址
:return:
"""
from urllib.request import urlretrieve
urlretrieve(imgurl, imgsavepath)
def after_quit(self):
"""
关闭浏览器
:return:
"""
self.driver.quit()
def login_main(self):
# ssl._create_default_https_context = ssl._create_unverified_context
driver = self.driver
driver.maximize_window()
driver.get(self.url)
click_keyi_username = driver.find_element_by_xpath("//div[@class='wp-onb-tit']/a[text()='可疑用户']")
self.webdriverwait_click(driver, click_keyi_username)
login_button = driver.find_element_by_id('code')
self.webdriverwait_click(driver, login_button)
time.sleep(1)
driver.switch_to.frame(driver.find_element_by_id('tcaptcha_iframe')) # switch 到 滑块frame
time.sleep(0.5)
bk_block = driver.find_element_by_xpath('//img[@id="slideBg"]') # 大图
web_image_width = bk_block.size
web_image_width = web_image_width['width']
bk_block_x = bk_block.location['x']
slide_block = driver.find_element_by_xpath('//img[@id="slideBlock"]') # 小滑块
slide_block_x = slide_block.location['x']
bk_block = driver.find_element_by_xpath('//img[@id="slideBg"]').get_attribute('src') # 大图 url
slide_block = driver.find_element_by_xpath('//img[@id="slideBlock"]').get_attribute('src') # 小滑块 图片url
slid_ing = driver.find_element_by_xpath('//div[@id="tcaptcha_drag_thumb"]') # 滑块
os.makedirs('./image/', exist_ok=True)
self.urllib_download(bk_block, './image/bkBlock.png')
self.urllib_download(slide_block, './image/slideBlock.png')
time.sleep(0.5)
img_bkblock = Image.open('./image/bkBlock.png')
real_width = img_bkblock.size[0]
width_scale = float(real_width) / float(web_image_width)
position = self.get_postion('./image/bkBlock.png', './image/slideBlock.png')
real_position = position[1] / width_scale
real_position = real_position - (slide_block_x - bk_block_x)
track_list = self.get_track(real_position + 4)
ActionChains(driver).click_and_hold(on_element=slid_ing).perform() # 点击鼠标左键,按住不放
time.sleep(0.2)
# print('第二步,拖动元素')
for track in track_list:
ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
time.sleep(0.002)
# ActionChains(driver).move_by_offset(xoffset=-random.randint(0, 1), yoffset=0).perform() # 微调,根据实际情况微调
time.sleep(1)
# print('第三步,释放鼠标')
ActionChains(driver).release(on_element=slid_ing).perform()
time.sleep(1)
print('登录成功')
self.after_quit()
if __name__ == '__main__':
phone = "****"
login = Login()
login.login_main()
滑块验证码
最新推荐文章于 2025-05-12 09:19:35 发布