CnOpenData中国城市层面电力短缺指数

Power shortage index for 218 Chinese cities

  • Contributors: Dongmei Guo, Qin Li, Peng Liu, Xunpeng Shi, Jian Yu
  • Abstract: This paper uses the text analysis method to construct a city-level power shortage index. We selected daily newspapers from 218 prefecture-level city as the data source and used a combination of selected high-frequency words with expert investigation to screen out basic terms related to power shortage. The following 20 keywords were identified: peak scheduling management, power generation, waste heat power generation, off-peak, grid disconnection, power rationing, switching off, orderly power consumption, tripping, peak avoidance, disconnection, plant power consumption, staggered peak avoidance, pull road, accident electricity, overload, transferring power supply, security of electricity, power rationing, and load transfer.

  Mr. Jian Yu and his collaborators present a power shortage index to characterize the city-level power outages for 218 Chinese cities from 2001 to 2017. Please cite the following papers when using this data:

  • Guo, D., Li, Q., Liu, P., Shi, X., Yu, J., 2023. Power shortage and firm performance: Evidence from a Chinese city power shortage index, Energy Economics, Vol.119, No.106593.

  经中央财经大学俞剑老师授权,CnOpenData建立了该数据的展示区及数据索引,便于学者浏览。

  数据下载请点击Power shortage index for 218 Chinese cities


数据应用指南

Visual representation of the word frequencies of power shortage keywords

Visual representation of the word frequencies of power shortage keywords


时间区间

2001-2017


字段展示

Economic policy uncertainty (EPU) index
city
year
power shortage index with 5 keywords
power shortage index with 20 keywords
planned power shortage index
unplanned power shortage index

样本数据

province_codeprovince_nameyearChina's provincial EPU index
11北京201768.1627655
12天津2017139.3325806
13河北201779.15668488
14山西2017189.1946869
15内蒙古201776.54681396
21辽宁201791.38005066
22吉林201789.98912048
23黑龙江20177.519604683
31上海201780.68917847
32江苏201747.75826263
33浙江201797.14289093
34安徽2017111.6440353
35福建2017160.7241058
36江西2017102.082283
37山东201778.49134827
41河南201796.05151367
42湖北201799.25975037
43湖南201754.22574615
44广东201756.38425064
45广西2017118.8451614
46海南201757.19842529
50重庆2017107.0997543
51四川2017118.5892792
52贵州201790.86172485
53云南201738.87081146
54西藏2017163.8305817
61陕西201799.39268494
62甘肃2017137.8933868
63青海201779.26584625
64宁夏2017102.7975769
65新疆201746.38435364
11北京201647.85101318
12天津2016143.1006927
13河北2016115.6779938
14山西201698.37980652
15内蒙古2016108.1842651
21辽宁201680.5438385
22吉林2016104.2610016
23黑龙江201681.40262604
31上海2016128.4771423
32江苏201643.71399307
33浙江201690.4801178
34安徽2016125.6614151
35福建201694.90132904
36江西2016113.8047638
37山东201655.01879883
41河南201686.23591614
42湖北2016139.5249634
43湖南201658.70393753
44广东201657.20541382

参考文献

  • Guo, D., Li, Q., Liu, P., Shi, X., Yu, J., 2023. Power shortage and firm performance: Evidence from a Chinese city power shortage index, Energy Economics, Vol.119, No.106593.

数据更新频率

不定期更新

【多种改进粒子群算法进行比较】基于启发式算法的深度神经网络卸载策略研究【边缘计算】(Matlab代码实现)内容概要:本文围绕“基于多种改进粒子群算法比较的深度神经网络卸载策略研究”展开,聚焦于边缘计算环境下的计算任务卸载优化问题。通过引入多种改进的粒子群优化(PSO)算法,并与其他启发式算法进行对比,旨在提升深度神经网络模型在资源受限边缘设备上的推理效率与系统性能。文中详细阐述了算法设计、模型构建、优化目标(如延迟、能耗、计算负载均衡)以及在Matlab平台上的代码实现过程,提供了完整的仿真验证与结果分析,展示了不同算法在卸载决策中的表现差异。; 适合人群:具备一定编程基础和优化算法知识,从事边缘计算、人工智能部署、智能优化等相关领域的科研人员及研究生;熟悉Matlab仿真工具的开发者。; 使用场景及目标:①研究边缘计算环境中深度学习模型的任务卸载机制;②对比分析多种改进粒子群算法在复杂优化问题中的性能优劣;③为实际系统中低延迟、高能效的AI推理部署提供算法选型与实现参考; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注算法实现细节与参数设置,通过复现仿真结果深入理解不同启发式算法在卸载策略中的适用性与局限性,同时可拓展至其他智能优化算法的对比研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值