POJ3020-Antenna Placement 无向二分图 匈牙利算法 裸题

本文介绍了一种针对瑞典第五代移动网络布局的优化算法。该算法通过最小化所需天线数量来确保所有兴趣点的有效覆盖。使用无向二分图匈牙利算法求解最大匹配问题,并给出具体实现细节及样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered? 

Input
On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space. 

Output
For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.
Sample Input
2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*
Sample Output
17
5


  算出最大匹配   ans 那么结果就是  ans+amount-ans*2


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<vector>
#include<map>
#include<string>
#include<cmath>
#define ff(i,x,y) for(int i=x;i<y;i++)
#define maxlen 400+7
#define maxlen2 40+7
using namespace std;
int dir[4][2] = {{ -1, 0}, {1, 0}, {0, -1}, {0, 1}};
int mp[maxlen2][maxlen2];//原始的map图 0表示openplace 非0表示interesting place 有序号
bool mmap[maxlen][maxlen];
int n;
int m;
int key;//保存非0点的数量
bool check[maxlen];
int matching[maxlen];
bool dfs(int u)//无向二分图匈牙利算法 dfs
{
	for(int i = 1; i <= key; i++)
	{
		if(mmap[u][i]&&check[i] == 0)
		{
			check[i] = 1;
			if(matching[i] == -1 || dfs(matching[i]) == 1)
			{
				matching[i] = u;//两端match
				matching[u] = i;
				return true;
			}
		}
	}//for
	return false;
}
int main()
{
	//freopen("test.txt", "r", stdin);
	int t;
	scanf("%d", &t);
	while(t--)
	{
		memset(mmap,0,sizeof mmap);
		scanf("%d %d", &n, &m);
		//input
		key = 0;
		for(int i = 0; i < n; i++)
		{
			char x[maxlen];
			scanf("%s", x);
			for(int j = 0; j < m; j++)
			{
				if(x[j] == 'o')
					mp[i][j] = 0;
				else
				{
					mp[i][j] = ++key;
				}
			}
		}//for
		//construct graph
		for(int i = 0; i < n; i++)
		{
			for(int j = 0; j < m; j++)
			{
				if(mp[i][j] == 0)
					continue;
				int ordera = mp[i][j];
				for(int k = 0; k < 4; k++)
				{
					int newx = i + dir[k][0];
					int newy = j + dir[k][1];
					if((0 <= newx && newx < n) && (0 <= newy && newy < m))
					{
						if(mp[newx][newy] == 0)
							continue;
						int orderb = mp[newx][newy];
						if(!mmap[ordera][orderb])
							mmap[ordera][orderb] = mmap[orderb][ordera] = 1;
					}
				}
			}
		}
		//do 匈牙利
		int ans = 0;
		memset(matching, -1, sizeof matching);
		for(int i = 1; i <= key; i++)
		{
			if(matching[i] == -1)
			{
				memset(check, 0, sizeof check);
				if(dfs(i) == 1)
					ans++;
			}
		}
		printf("%d\n", ans+key-ans*2);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值