大数据学习笔记 2.2、IDEA开发词频统计项目

目录

一、准备工作

1、版本问题

2、卸载之前在Windows上安装的Scala2.13.10

3、启动集群的HDFS与Spark 

4、在HDFS上准备单词文件

​二、本地模式运行Spark项目 

1、新建Maven项目

2、添加项目相关依赖

 3、创建日志属性文件

 4、添加Scala SDK

5、创建HDFS配置文件 

 6、创建词频统计单例对象

 7、运行查看结果

 8、解析程序代码

8.1、Spark配置对象

8.2、Spark容器对象

8.3、读取文本文件方法

9、修改程序,使用命令行参数 

三、集群模式运行Spark项目

1、利用Maven打包

2、利用IDEA打包

3、执行提交命令 

3.1、不带参数执行

3.2、带参数执行 

3.3、提交命令参数解析 

四、Spark WebUI界面查看应用程序信息


一、准备工作

  • 单词计数是学习分布式计算的入门程序,有很多种实现方式,例如MapReduce;使用Spark提供的RDD算子可以更加轻松地实现单词计数。
  • 在IntelliJ IDEA中新建Maven管理的Spark项目,在该项目中使用Scala语言编写Spark的WordCount程序,可以本地运行Spark项目查看结果,也可以将项目打包提交到Spark集群(Standalone模式)中运行。

1、版本问题

  • 前面创建了Spark集群(Standalone模式),采用的是Spark3.3.2版本
  • Spark3.3.2用的Scala库是2.13,但是Spark-Shell里使用的Scala版本是2.12.15

  • 为了Spark项目打成jar包能够提交到这个Spark集群运行,本地就要安装Scala2.12.15
  • 由于Spark项目要求Spark内核版本与Scala库版本(主版本.次版本)要保持一致,否则本地都无法运行项目。Spark3.2.0开始,要求Scala库版本就更新到了2.13,只有Spark3.1.3使用Scala库版本依然是2.12,因此Spark项目选择使用Spark3.1.3。
  • Spark项目如果基于JDK11,本地运行没有问题,但是打成Jar包提交到集群运行会报错
  • 卸载之前在Windows上安装的Scala2.13.10

2、卸载之前在Windows上安装的Scala2.13.10

 

3、启动集群的HDFS与Spark 

  • 启动HDFS服务

  • 启动Spark集群

4、在HDFS上准备单词文件

  • 在master虚拟机上创建单词文件 - words.txt

  • 将单词文件上传到HDFS指定目录/wordcount/input

二、本地模式运行Spark项目 

1、新建Maven项目

  • 新建Maven项目,注意,要基于JDK8

  •  设置项目信息(项目名称、保存位置、组编号以及产品编号)
  • 单击【Finish】按钮,完成创建

  • java目录重命名改成scala目录 

2、添加项目相关依赖

  • pom.xml文件里添加依赖,并告知源程序目录已改成scala

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.rdd</groupId>
    <artifactId>SparkRddWordCount</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.12.15</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.1.3</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
    </build>



</project>

 3、创建日志属性文件

  • resources目录里创建日志属性文件 - log4j.properties

log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/rdd.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

 4、添加Scala SDK

  • 在项目结构窗口的Global Libraries里添加Scala 2.12.15

  • 点击ok

5、创建HDFS配置文件 

  • resources目录里创建hdfs-site.xml文件,允许客户端使用数据节点(因为本机外网访问私有云上的集群)

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property>
        <description>only config in clients</description>
        <name>dfs.client.use.datanode.hostname</name>
        <value>true</value>
    </property>
</configuration>

 6、创建词频统计单例对象

  • 创建net.rdd.day01包,然后在包里创建WordCount单例对象

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    // 创建Spark配置对象
    val conf = new SparkConf()
      .setAppName("SparkRDDWordCount") // 设置应用名称
      .setMaster("local[*]") // 设置主节点位置(本地调试)
    // 基于Spark配置对象创建Spark容器
    val sc = new SparkContext(conf)
    // 定义输入路径
    val inputPath = "hdfs://192.168.219.75:9000/wordcount/input"
    // 定义输出路径
    val outputPath = "hdfs://192.168.219.75:9000/wordcount/output"
    // 进行词频统计
    val wc = sc.textFile(inputPath)  // 读取文件,得到RDD
      .flatMap(_.split(" ")) // 扁平化映射,得到单词数组
      .map((_, 1)) // 针对每个单词得到二元组(word, 1)
      .reduceByKey(_ + _) // 按键进行聚合(key相同,value就累加)
      .sortBy(_._2, false) // 按照单词个数降序排列
    // 在控制台输出词频统计结果
    wc.collect.foreach(println)
    // 将词频统计结果写入指定文件
    wc.saveAsTextFile(outputPath)
    // 停止Spark容器,结束任务
    sc.stop
  }

}

 7、运行查看结果

  • 然后查看HDFS上的结果文件

  • 显示结果文件内容 

  • 有两个结果文件,我们可以分别查看其内容

 8、解析程序代码

8.1、Spark配置对象

  • SparkConf对象的setMaster()方法用于设置Spark应用程序提交的URL地址。若是Standalone集群模式,则指Master节点的访问地址;若是本地(单机)模式,则需要将地址改为local或local[N]或local[*],分别指使用1个、N个和多个CPU核心数。本地模式可以直接在IDE中运行程序,不需要Spark集群。
  • 此处也可不设置。若将其省略,则使用spark-submit提交该程序到集群时必须使用--master参数进行指定。

8.2、Spark容器对象

  • SparkContext对象用于初始化Spark应用程序运行所需要的核心组件,是整个Spark应用程序中很重要的一个对象。启动Spark Shell后默认创建的名为sc的对象即为该对象。

8.3、读取文本文件方法

  • textFile()方法需要传入数据来源的路径。数据来源可以是外部的数据源(HDFS、S3等),也可以是本地文件系统(Windows或Linux系统),路径可使用以下3种方式。
路径方式说明
文件路径例如textFile("/wordcount/input/words.txt "),此时将只读取指定的文件。
目录路径例如textFile("/wordcount/input/"),此时将读取指定目录input下的所有文件,不包括子目录。
路径包含通配符例如textFile("/wordcount/input/*.txt"),此时将读取input目录下的所有TXT文件。

  • 该方法将读取的文件中的内容按行进行拆分并组成一个RDD集合。

9、修改程序,使用命令行参数 

import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    // 创建Spark配置对象
    val conf = new SparkConf()
      .setAppName("SparkRDDWordCount") // 设置应用名称
      .setMaster("local[*]") // 设置主节点位置(本地调试)
    // 基于Spark配置对象创建Spark容器
    val sc = new SparkContext(conf)
    // 声明输入输出路径
    var inputPath = ""
    var outputPath = ""
    // 判断命令行参数个数
    if (args.length == 0) {
      inputPath = "hdfs://192.168.219.75:9000/wordcount/input"
      outputPath = "hdfs://192.168.219.75:9000/wordcount/output"
    } else if (args.length == 2) {
      inputPath = args(0)
      outputPath = args(1)
    } else {
      println("温馨提示:命令行参数个数只能是0或2~")
      return
    }// 进行词频统计
    val wc = sc.textFile(inputPath)  // 读取文件,得到RDD
      .flatMap(_.split(" ")) // 扁平化映射,得到单词数组
      .map((_, 1)) // 针对每个单词得到二元组(word, 1)
      .reduceByKey(_ + _) // 按键进行聚合(key相同,value就累加)
      .sortBy(_._2, false) // 按照单词个数降序排列
    // 在控制台输出词频统计结果
    wc.collect.foreach(println)
    // 将词频统计结果写入指定文件
    wc.saveAsTextFile(outputPath)
    // 停止Spark容器,结束任务
    sc.stop
  }
}
  •  创建/home/test.txt文件,上传到HDFS指定目录

  • 打开配置窗口

  • 配置命令行参数,注意两个参数之间必须有空格

  •  运行查看结果

  • 注意:如果命令行参数只设置一个 ,会报错

三、集群模式运行Spark项目

1、利用Maven打包

  • 添加打包插件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
          http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>net.huawei.rdd</groupId>
    <artifactId>SparkRDDWordCount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>2.12.15</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.1.3</version>
        </dependency>
    </dependencies>
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.3.2</version>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>
  •  刷新一下,点击右侧maven

  • 单击LifeCycle下的package命令

  •  打包报错,我们利用其他方法打包

2、利用IDEA打包

  • 删除pom.xml文件里的构建插件

  • 刷新
  • 打开项目结构窗口,选择Artifacts栏目

  • 单击+按钮,在ADD列表里JAR 

  • JAR子菜单里选择第二项From modules with dependencies...,设置主类以及JAR文件
  •  点击ok

  • 修改名称,将输出目录里的依赖包全部移除

  • 点击ok 

  • 生成ArtifactArtifactArtifact

  •  单击【Build】之后,项目里会出现out目录

  • 由于没有将依赖包添加到生成的jar包,所以生成的jar包很小,只有5KB。如果将全部依赖包都打进jar包,那么生成的jar包就会有几十兆。

  • 将生成的jar包上传到master虚拟机/home目录 

3、执行提交命令 

3.1、不带参数执行

  • 采用client提交方式
  • 执行命令:spark-submit --master spark://master:7077 --class net.rdd.day01.WordCount SparkRddWordCount.jar

  •  在一堆输出信息中查看词频统计结果

  • 查看结果文件内容

  • 删除输出目录 

3.2、带参数执行 

  • 采用client提交方式
  • 执行命令:spark-submit --master spark://master:7077 --class net.rdd.day01.WordCount SparkRddWordCount.jar hdfs://192.168.219.75:9000/wc/input hdfs://192.168.219.75:9000/wc/output

  • 在一堆输出信息里查看词频统计结果

  • 删除输出目录 

  • 执行命令:spark-submit --master spark://master:7077 --class net.rdd.day01.WordCount SparkRddWordCount.jar hdfs://192.168.219.75:9000/wc/input(只设置输入路径参数,没有设置输出路径参数)

  •  重新运行正确的命令,在Spark WebUI里查看

  • 单击stdout超链接

3.3、提交命令参数解析 

  • –master:Spark Master节点的访问路径。由于在WordCount程序中已经通过setMaster()方法指定了该路径,因此该参数可以省略。
  • –class:SparkWordCount程序主类的访问全路径(包名.类名)。
  • hdfs://192.168.219.75:9000/wc/input:单词数据的来源路径。该路径下的所有文件都将参与统计。
  • hdfs://192.168.219.75:9000/wc/output:统计结果的输出路径。与MapReduce一样,该目录不应提前存在,Spark会自动创建。

四、Spark WebUI界面查看应用程序信息

  • 在应用程序运行的过程中,也可以访问Spark的WebUI http://192.168.219.75:4040/,查看正在运行的Job(作业)的状态信息,包括作业ID、作业描述、作业已运行时长、作业已运行Stage数量、作业Stage总数、作业已运行Task任务数量等(当作业运行完毕后,该界面将不可访问)
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值