题意:给你n和k,求(1^k + 2^k + 3^k + ... + n^k) % 2^32, n <= 1e15, k <= 50
思路:可以知道f(x+1) = f(x) + (x+1)^k,
(x+1)^k 可以用二项式定理展开变成C(k, 0)*x^k+C(k, 1)*x^(k-1)...+C(k, k)*x^0
这就可以构造矩阵快速幂了。
具体思路:
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn = 55;
unsigned int c[maxn][maxn];
ll n, K;
struct node
{
unsigned int s[maxn][maxn];
};
node mul(node a, node b)
{
node t;
memset(t.s, 0, sizeof(t.s));
for(int i = 0; i < K+2; i++)
for(int k = 0; k < K+2; k++)
for(int j = 0; j < K+2; j++)
t.s[i][j] = t.s[i][j]+a.s[i][k]*b.s[k][j];
return t;
}
node mt_pow(node p, ll k)
{
node q;
memset(q.s, 0, sizeof(q.s));
for(int i = 0; i < K+2; i++)
q.s[i][i] = 1;
while(k)
{
if(k%2) q = mul(p, q);
p = mul(p, p);
k /= 2;
}
return q;
}
void init()
{
for(int i = 1; i < maxn; i++)
for(int j = 0; j <= i; j++)
{
if(!j || j==i) c[i][j] = 1;
else c[i][j] = c[i-1][j]+c[i-1][j-1];
}
}
int main(void)
{
init();
// freopen("out.txt", "w", stdout);
int _, ca = 1;
cin >> _;
while(_--)
{
scanf("%lld%lld", &n, &K);
if(K == 0) printf("Case %d: %u\n", ca++, (unsigned int)n);
else
{
node base;
memset(base.s, 0, sizeof(base.s));
base.s[0][0] = 1;
for(int i = 1; i < K+2; i++) base.s[0][i] = c[K][i-1];
for(int i = 1; i < K+1; i++)
for(int j = i; j < K+2; j++)
base.s[i][j] = c[K-i+1][j-i];
base.s[K+1][K+1] = 1;
node ans = mt_pow(base, n-1);
unsigned int res = 0;
for(int i = 0; i < K+2; i++)
res += ans.s[0][i];
printf("Case %d: %u\n", ca++, res);
}
}
return 0;
}