hdoj 5584 LCM Walk(数学,逆推)

本文介绍了一道名为LCMWalk的问题解决方案。该问题要求计算从任意起点到给定终点的所有可能路径数量,通过特殊跳跃规则(跳至最近的公共倍数距离)。文章详细解析了算法思路,并给出了具体实现代码。

题意:

在位置(x, y),可以走到(x+lcm(x, y), y) 或(x, y+lcm(x, y))或者不移动。给定终点位置,求可能的起点位置数。


思路:设当前在(x, y)处,下一步可以是(x+lcm(x, y), y)或(x, y+lcm(x, y)). 令gcd(x, y) = k, x = m*k,

y = n*k, 则(m*k+m*n*k, n*k)或(m*k, n*k+m*n*k) --> k*(m*(1+n), n)或k*(m, n*(1+m))

所以假设当前为(m, n)[m n互质且 m > n], 可以推得上一步为(m/(1+n), n) 当且仅当m%(1+n) == 0


代码:

#include<bits/stdc++.h>
using namespace std;
int main(void)
{
    int t, ca = 1;
    cin >> t;
    while(t--)
    {
        int ex, ey, ans = 1;
        scanf("%d%d", &ex, &ey);
        int k = __gcd(ex, ey);
        ex /= k, ey /= k;
        if(ex < ey) swap(ex, ey);
        while(ex % (1+ey) == 0)
        {
            ex /= (1+ey);
            ans++;
            if(ex < ey) swap(ex, ey);
        }
        printf("Case #%d: %d\n", ca++, ans);
    }
    return 0;
}

LCM Walk

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1350    Accepted Submission(s): 694


Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered  1,2,  from the bottom, so are the columns. At first the frog is sitting at grid  (sx,sy) , and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid  (x,y) , first of all, he will find the minimum  z  that can be divided by both  x  and  y , and jump exactly  z  steps to the up, or to the right. So the next possible grid will be  (x+z,y) , or  (x,y+z) .

After a finite number of steps (perhaps zero), he finally finishes at grid  (ex,ey) . However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach  (ex,ey) !
 

Input
First line contains an integer  T , which indicates the number of test cases.

Every test case contains two integers  ex  and  ey , which is the destination grid.

  1T1000 .
  1ex,ey109 .
 

Output
For every test case, you should output " Case #x: y", where  x  indicates the case number and counts from  1  and  y  is the number of possible starting grids.
 

Sample Input
  
3 6 10 6 8 2 8
 

Sample Output
  
Case #1: 1 Case #2: 2 Case #3: 3
 

Source
 

Recommend
wange2014

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值