Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
[思路]
深度优先搜索搜寻节点,存储节点路径。在两个路径中找到公共节点。注意不是二叉搜索树。
[代码]
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> path1;
vector<TreeNode*> path2;
TreeNode* ret;
FindPath(root,path1,p);
FindPath(root,path2,q);
for(int i=0 ;i<min(path1.size(),path2.size());++i){
if(path1[i]==path2[i])
ret = path1[i];
}
return ret;
}
void FindPath(TreeNode *root,vector<TreeNode*> &path,TreeNode *find){
if(root == nullptr){
return;
}
if(root == find){
path.push_back(find);
return;
}
path.push_back(root);
FindPath(root->left,path,find);
FindPath(root->right,path,find);
path.pop_back();
}
};
1068

被折叠的 条评论
为什么被折叠?



