1.sum
a
1, 2 | axis 1
3, 4 |
--------|
axis 0
a.sum(axis=0)
array([4, 6])
a.sum(axis=1)
array([3, 7])
2. np.square
每个元素
3. 加维度
a=[1,2]
aa=a[:,None]
aa.shape=(2,1)
b=[1,2,3]
bb=b[None,:]
bb.shape=(1,3)
4. 两个基底构成矩阵
aa+bb
1,2,3
-------
1 | 2,3,4
2 | 3,4,5
5. 计算距离矩阵(norm2, cosine)
a : array_like
An NxM matrix of N samples of dimensionality M.
b : array_like
An LxM matrix of L samples of dimensionality M.
Returns a matrix of size len(a), len(b), ret[i][j]
contains the squared distance between `a[i]` and `b[j]`.
def norm2_mat(a,b):
a2,b2=np.square(a).sum(axis=1),np.square(b).sum(axis=1)
r2=a2[:,None]+b2[None,:] -2*np.dot(a,b.T)
return r2
等价于
def norm2(a,b):
n,m=a.shape
l,m=b.shape
ret=np.zeros((n,l),dtype=np.float)
for i in range(n):
for j in range(l):
ret[i][j]=np.square(a[i]-b[j]).sum()
return ret
cosine_mat
def _cosine_distance(a, b, data_is_normalized=False):
if not data_is_normalized:
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
return 1. - np.dot(a, b.T)