Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null){
return true;
}else if(isBalanced(root.left)&&isBalanced(root.right)){
if(Math.abs(nodeHeight(root.left)-nodeHeight(root.right))>1){
return false;
}
return true;
}
return false;
}
int nodeHeight(TreeNode root){
if(root==null){
return 0;
}else{
int leftHeight;
int rightHeight;
leftHeight=nodeHeight(root.left);
rightHeight=nodeHeight(root.right);
return Math.max(leftHeight,rightHeight)+1;
}
}
}
1 use recursive;
2 should consider 2 cases:
1) itself is balanced;
2) its left and right subtree is balanced;