Sklearn-CrossValidation交叉验证

  1. 交叉验证概述

进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果。

最先我们用训练准确度(用全部数据进行训练和测试)来衡量模型的表现,这种方法会导致模型过拟合;为了解决这一问题,我们将所有数据分成训练集和测试集两部分,我们用训练集进行模型训练,得到的模型再用测试集来衡量模型的预测表现能力,这种度量方式叫测试准确度,这种方式可以有效避免过拟合。

测试准确度的一个缺点是其样本准确度是一个高方差估计high varianceestimate),所以该样本准确度会依赖不同的测试集,其表现效果不尽相同。

  1. K折交叉验证
  1. 将数据集平均分割成K个等份
  2. 使用1份数据作为测试数据,其余作为训练数据
  3. 计算测试准确率
  4. 使用不同的测试集,重复2、3步骤
  5. 测试准确率做平均,作为对未知数据预测准确率的估计


  • sklearn.model_selection.Kfold

classsklearn.model_selection.KFold(n_splits=3,shuffle=False, random_state=None)

参数:

n_splits : 默认3,最小为2K折验证的K

shuffle : 默认False;shuffle会对数据产生随机搅动(洗牌)

random_state :默认None,随机种子

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值