在上一篇文章中,我们讨论了如何构建一个产品助手Agent。今天,我想分享另一个实际项目:如何构建一个销售助手Agent。这个项目源于我们一个销售团队的真实需求 - 提升销售效率,增加成交率。
从销售痛点说起
记得和销售团队讨论时的场景:
小王:每天要处理很多客户咨询,有时候回复不过来
小李:是啊,而且要准备各种方案和报价也很耗时
我:主要是哪些销售场景?
小王:客户咨询、方案制定、报价谈判这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:
- 客户管理
- 方案定制
- 报价谈判
- 数据分析
技术方案设计
首先是整体架构:
from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio
class SalesTask(Enum):
CUSTOMER = "customer"
SOLUTION = "solution"
QUOTE = "quote"
ANALYSIS = "analysis"
class SalesContext(BaseModel):
task_type: SalesTask
customer_info: Dict[str, Any]
product_info: Dict[str, Any]
history: Optional[List[Dict[str, Any]]]
market_info: Optional[Dict[str, Any]]
class SalesAssistant:
def __init__(
self,
config: Dict[str, Any]
):
# 1. 初始化销售模型
self.sales_model = SalesLLM(
model="gpt-4",
temperature=0.7,
context_length=8000
)
# 2. 初始化工具集
self.tools = {
"customer": CustomerManager(),
"solution": SolutionDesigner(),
"quote": QuoteNegotiator(),
"analyzer": DataAnalyzer()
}
# 3. 初始化知识库
self.knowledge_base = VectorStore(
embeddings=SalesEmbeddings(),
collection="sales_knowledge"
)
async def process_task(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 分析任务
task_info = await self._analyze_task(
context
)
# 2. 准备资源
resources = await self._prepare_resources(
context,
task_info
)
# 3. 生成方案
plan = await self._generate_plan(
task_info,
resources
)
# 4. 执行任务
result = await self._execute_task(
plan,
context
)
return result
async def _analyze_task(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 识别任务类型
task_type = await self._identify_task_type(
context.task_type
)
# 2. 评估优先级
priority = await self._evaluate_priority(
context
)
# 3. 确定策略
strategy = await self._determine_strategy(
task_type,
priority
)
return {
"type": task_type,
"priority": priority,
"strategy": strategy
}
客户管理功能
首先实现客户管理功能:
class CustomerManager:
def __init__(
self,
model: SalesLLM
):
self.model = model
async def manage_customer(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 分析客户
analysis = await self._analyze_customer(
context
)
# 2. 生成策略
strategy = await self._generate_strategy(
analysis
)
# 3. 执行计划
plan = await self._execute_plan(
strategy,
context
)
return plan
async def _analyze_customer(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 基本信息分析
basic = await self._analyze_basic_info(
context.customer_info
)
# 2. 需求分析
needs = await self._analyze_needs(
context
)
# 3. 行为分析
behavior = await self._analyze_behavior(
context.history
)
return {
"basic": basic,
"needs": needs,
"behavior": behavior
}
async def _generate_strategy(
self,
analysis: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 沟通策略
communication = await self._generate_communication_strategy(
analysis
)
# 2. 跟进策略
followup = await self._generate_followup_strategy(
analysis
)
# 3. 转化策略
conversion = await self._generate_conversion_strategy(
analysis
)
return {
"communication": communication,
"followup": followup,
"conversion": conversion
}
方案定制功能
接下来是方案定制功能:
class SolutionDesigner:
def __init__(
self,
model: SalesLLM
):
self.model = model
async def design_solution(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 分析需求
requirements = await self._analyze_requirements(
context
)
# 2. 设计方案
solution = await self._design_solution(
requirements
)
# 3. 优化方案
optimized = await self._optimize_solution(
solution,
context
)
return optimized
async def _analyze_requirements(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 业务需求
business = await self._analyze_business_requirements(
context.customer_info
)
# 2. 技术需求
technical = await self._analyze_technical_requirements(
context.customer_info
)
# 3. 预算需求
budget = await self._analyze_budget_requirements(
context.customer_info
)
return {
"business": business,
"technical": technical,
"budget": budget
}
async def _design_solution(
self,
requirements: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 产品选型
products = await self._select_products(
requirements
)
# 2. 服务配置
services = await self._configure_services(
requirements,
products
)
# 3. 实施方案
implementation = await self._design_implementation(
products,
services
)
return {
"products": products,
"services": services,
"implementation": implementation
}
报价谈判功能
再来实现报价谈判功能:
class QuoteNegotiator:
def __init__(
self,
model: SalesLLM
):
self.model = model
async def negotiate_quote(
self,
context: SalesContext,
solution: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 生成报价
quote = await self._generate_quote(
solution,
context
)
# 2. 制定策略
strategy = await self._develop_strategy(
quote,
context
)
# 3. 执行谈判
result = await self._execute_negotiation(
strategy,
context
)
return result
async def _generate_quote(
self,
solution: Dict[str, Any],
context: SalesContext
) -> Dict[str, Any]:
# 1. 成本分析
costs = await self._analyze_costs(
solution
)
# 2. 价格策略
pricing = await self._determine_pricing(
costs,
context
)
# 3. 优惠方案
discounts = await self._design_discounts(
pricing,
context
)
return {
"costs": costs,
"pricing": pricing,
"discounts": discounts
}
async def _develop_strategy(
self,
quote: Dict[str, Any],
context: SalesContext
) -> Dict[str, Any]:
# 1. 分析竞争
competition = await self._analyze_competition(
context.market_info
)
# 2. 评估风险
risks = await self._evaluate_risks(
quote,
competition
)
# 3. 制定策略
strategy = await self._formulate_strategy(
quote,
risks
)
return {
"competition": competition,
"risks": risks,
"strategy": strategy
}
数据分析功能
最后是数据分析功能:
class DataAnalyzer:
def __init__(
self,
model: SalesLLM
):
self.model = model
async def analyze_data(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 收集数据
data = await self._collect_data(
context
)
# 2. 分析数据
analysis = await self._analyze_data(
data
)
# 3. 生成洞察
insights = await self._generate_insights(
analysis,
context
)
return insights
async def _collect_data(
self,
context: SalesContext
) -> Dict[str, Any]:
# 1. 销售数据
sales = await self._collect_sales_data(
context
)
# 2. 客户数据
customer = await self._collect_customer_data(
context
)
# 3. 市场数据
market = await self._collect_market_data(
context
)
return {
"sales": sales,
"customer": customer,
"market": market
}
async def _analyze_data(
self,
data: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 趋势分析
trends = await self._analyze_trends(
data
)
# 2. 模式分析
patterns = await self._analyze_patterns(
data
)
# 3. 预测分析
predictions = await self._make_predictions(
data,
trends,
patterns
)
return {
"trends": trends,
"patterns": patterns,
"predictions": predictions
}
实际效果
经过三个月的使用,这个销售助手Agent带来了显著的改善:
效率提升
- 响应速度提升80%
- 方案制定更快
- 成交率提高30%
质量改善
- 方案更专业
- 报价更合理
- 服务更贴心
数据驱动
- 决策更准确
- 预测更精准
- 优化更有效
实践心得
在开发这个销售助手Agent的过程中,我总结了几点经验:
以客为本
- 理解客户需求
- 提供个性化服务
- 持续跟进反馈
数据驱动
- 重视数据分析
- 优化销售策略
- 预测市场趋势
持续优化
- 收集反馈
- 迭代改进
- 提升效果
写在最后
一个好的销售助手Agent不仅要能处理日常工作,更要理解销售的本质,帮助销售团队提升业绩。它就像一个经验丰富的销售专家,在合适的时候给出恰当的建议。
在下一篇文章中,我会讲解如何开发一个学习助手Agent。如果你对销售助手Agent的开发有什么想法,欢迎在评论区交流。