L1-032 Left-pad分数 20 java(带注释)

一位开发者因不满NPM的行为,撤回了一款名为left-pad的字符串填充模块,导致React/Babel受影响。该模块用于在字符串前填充字符至特定长度。本文将重现这一功能并讨论其影响。

根据新浪微博上的消息,有一位开发者不满NPM(Node Package Manager)的做法,收回了自己的开源代码,其中包括一个叫left-pad的模块,就是这个模块把javascript里面的React/Babel干瘫痪了。这是个什么样的模块?就是在字符串前填充一些东西到一定的长度。例如用*去填充字符串GPLT,使之长度为10,调用left-pad的结果就应该是******GPLT。Node社区曾经对left-pad紧急发布了一个替代,被严重吐槽。下面就请你来实现一下这个模块。

输入格式:

输入在第一行给出一个正整数N(≤104)和一个字符,分别是填充结果字符串的长度和用于填充的字符,中间以1个空格分开。第二行给出原始的非空字符串,以回车结束。

输出格式:

在一行中输出结果字符串。

输入样例1:

15 _
I love GPLT

输出样例1:

____I love GPLT

输入样例2:

4 *
this is a sample for cut

输出样例2:

 cut

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        //使用包装字符流读入 可以更优
        Scanner in = new Scanner(System.in);
        //因为第二行的输入可能有空格 所以只能读取一行然后分割字符串 
        String[] n=in.nextLine().split(" ");
        int a=Integer.parseInt(n[0]);//字符的长度要求
        String b=n[1];
        //如果上面使用的nextInt()和next()方法[输入格式以回车结束]那么str就会只读入一个空行
        String str=in.nextLine();
           
        //输入的字符串大于字符串的长度要求 直接截取字符串就可以,不需要前面补(b)字符
        if(a<=str.length()){
            //字符的长度减去要长度要求就是截取的起始下标
           System.out.println(str.substring(str.length()-a));
        }else {
            //定义一个临时变量 需要补上字符(b)的个数
            int tmp=a-str.length();
            for(int i=0;i<tmp;i++) {//测试平台使用的jdk不支持String类的repeat方法 这里采用循环
                System.out.print(b);
            }
            System.out.print(str);
        }
    }
}

注:不足还望各位补充 

#include "stm32f10x.h" #include "motor.h" #include "ps2_adapter.h" #include "ax_delay.h" #include "ax_led.h" #define MAX_SPEED 70 #define MIN_SPEED 10 #define SPEED_STEP 5 #define JOYSTICK_DEADZONE 20 PS2_State_t PS2_State; typedef enum { CAR_STOP, CAR_FORWARD, CAR_BACKWARD, CAR_LEFT, CAR_RIGHT, CAR_FOR_LEFT, CAR_FOR_RIGHT, CAR_BACK_LEFT, CAR_BACK_RIGHT } CarState_t; CarState_t car_state = CAR_STOP; uint8_t current_speed = 30; static uint32_t Get_Tick(void) { return AX_GetTick(); } int main(void) { SystemInit(); TIM4_SystemTick_Init(); AX_DELAY_Init(); AX_LED_Init(); Motor_Init(); PS2_Init(); AX_LED_Green_On(); AX_Delayms(500); AX_LED_Green_Off(); while(!PS2_IsConnected()) { AX_LED_Red_Toggle(); AX_Delayms(200); } AX_LED_Green_On(); AX_Delayms(200); AX_LED_Green_Off(); AX_Delayms(200); AX_LED_Green_On(); while(1) { PS2_ReadData(&PS2_State); if(PS2_State.Button & PSB_SELECT) { car_state = CAR_STOP; current_speed = MIN_SPEED; Car_Stop(); AX_LED_Red_On(); AX_Delayms(500); AX_LED_Red_Off(); continue; } static uint32_t last_speed_time = 0; uint32_t current_time = Get_Tick(); if((current_time - last_speed_time) > 20) { if(PS2_State.Button & PSB_L1) { if(current_speed < MAX_SPEED) { current_speed += SPEED_STEP; last_speed_time = current_time; AX_LED_Green_Toggle(); } } else if(PS2_State.Button & PSB_R1) { if(current_speed > MIN_SPEED) { current_speed -= SPEED_STEP; last_speed_time = current_time; AX_LED_Green_Toggle(); } } } CarState_t new_state = CAR_STOP; if((PS2_State.Button & PSB_PAD_UP)&&(PS2_State.Button & PSB_PAD_LEFT)) { new_state = CAR_FOR_LEFT; } else if((PS2_State.Button & PSB_PAD_UP)&&(PS2_State.Button & PSB_PAD_RIGHT)) { new_state = CAR_FOR_RIGHT; } else if((PS2_State.Button & PSB_PAD_DOWN)&&(PS2_State.Button & PSB_PAD_LEFT)) { new_state = CAR_BACK_LEFT; } else if((PS2_State.Button & PSB_PAD_DOWN)&&(PS2_State.Button & PSB_PAD_RIGHT)) { new_state = CAR_BACK_RIGHT; } else if(PS2_State.Button & PSB_PAD_UP) { new_state = CAR_FORWARD; } else if(PS2_State.Button & PSB_PAD_DOWN) { new_state = CAR_BACKWARD; } else if(PS2_State.Button & PSB_PAD_LEFT) { new_state = CAR_LEFT; } else if(PS2_State.Button & PSB_PAD_RIGHT) { new_state = CAR_RIGHT; } if(new_state != car_state) { car_state = new_state; } switch(car_state) { case CAR_FORWARD: Car_Move_Forward(current_speed); AX_LED_Green_On(); AX_LED_Red_Off(); break; case CAR_BACKWARD: Car_Move_Backward(current_speed); AX_LED_Red_On(); AX_LED_Green_Off(); break; case CAR_LEFT: Car_Turn_Left(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_RIGHT: Car_Turn_Right(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_FOR_LEFT: Car_Turn_For_Left(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_FOR_RIGHT: Car_Turn_For_Right(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_BACK_LEFT: Car_Turn_Back_Left(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_BACK_RIGHT: Car_Turn_Back_Right(current_speed); AX_LED_Green_Toggle(); AX_LED_Red_Toggle(); break; case CAR_STOP: default: Car_Stop(); AX_LED_Green_Off(); AX_LED_Red_Off(); break; } AX_Delayms(10); } } main.c #include "motor.h" #include "stm32f10x.h" // Device header Motor_TypeDef motors[6]; static void Motor_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } static void Motor_TIM_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM5, ENABLE); TIM_TimeBaseStructure.TIM_Period = 100 - 1; TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_TimeBaseInit(TIM5, &TIM_TimeBaseStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC1Init(TIM2, &TIM_OCInitStructure); TIM_OC2Init(TIM2, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable); TIM_OC1Init(TIM3, &TIM_OCInitStructure); TIM_OC2Init(TIM3, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable); TIM_OC3Init(TIM5, &TIM_OCInitStructure); TIM_OC4Init(TIM5, &TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM5, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM5, TIM_OCPreload_Enable); TIM_Cmd(TIM2, ENABLE); TIM_Cmd(TIM3, ENABLE); TIM_Cmd(TIM5, ENABLE); } void Motor_Init(void) { Motor_GPIO_Init(); Motor_TIM_Init(); motors[MOTOR1].timer = TIM2; motors[MOTOR1].channel = TIM_Channel_1; motors[MOTOR1].in1_port = GPIOB; motors[MOTOR1].in1_pin = GPIO_Pin_0; motors[MOTOR1].in2_port = GPIOB; motors[MOTOR1].in2_pin = GPIO_Pin_1; motors[MOTOR2].timer = TIM2; motors[MOTOR2].channel = TIM_Channel_2; motors[MOTOR2].in1_port = GPIOB; motors[MOTOR2].in1_pin = GPIO_Pin_10; motors[MOTOR2].in2_port = GPIOB; motors[MOTOR2].in2_pin = GPIO_Pin_11; motors[MOTOR3].timer = TIM3; motors[MOTOR3].channel = TIM_Channel_1; motors[MOTOR3].in1_port = GPIOB; motors[MOTOR3].in1_pin = GPIO_Pin_12; motors[MOTOR3].in2_port = GPIOB; motors[MOTOR3].in2_pin = GPIO_Pin_13; motors[MOTOR4].timer = TIM3; motors[MOTOR4].channel = TIM_Channel_2; motors[MOTOR4].in1_port = GPIOB; motors[MOTOR4].in1_pin = GPIO_Pin_14; motors[MOTOR4].in2_port = GPIOB; motors[MOTOR4].in2_pin = GPIO_Pin_15; motors[MOTOR5].timer = TIM5; motors[MOTOR5].channel = TIM_Channel_3; motors[MOTOR5].in1_port = GPIOB; motors[MOTOR5].in1_pin = GPIO_Pin_3; motors[MOTOR5].in2_port = GPIOB; motors[MOTOR5].in2_pin = GPIO_Pin_4; motors[MOTOR6].timer = TIM5; motors[MOTOR6].channel = TIM_Channel_4; motors[MOTOR6].in1_port = GPIOB; motors[MOTOR6].in1_pin = GPIO_Pin_5; motors[MOTOR6].in2_port = GPIOB; motors[MOTOR6].in2_pin = GPIO_Pin_6; All_Motor_Stop(); } void Motor_Set_Speed(uint8_t motor_id, int16_t speed) { uint16_t pulse; if(speed > 100) speed = 100; if(speed < 0) speed = 0; pulse = (uint16_t)((speed * (motors[motor_id].timer->ARR + 1)) / 100); switch(motors[motor_id].channel) { case TIM_Channel_1: TIM_SetCompare1(motors[motor_id].timer, pulse); break; case TIM_Channel_2: TIM_SetCompare2(motors[motor_id].timer, pulse); break; case TIM_Channel_3: TIM_SetCompare3(motors[motor_id].timer, pulse); break; case TIM_Channel_4: TIM_SetCompare4(motors[motor_id].timer, pulse); break; } } void Motor_Set_Direction(uint8_t motor_id, uint8_t direction) { switch (direction) { case MOTOR_DIR_FORWARD: GPIO_SetBits(motors[motor_id].in1_port, motors[motor_id].in1_pin); GPIO_ResetBits(motors[motor_id].in2_port, motors[motor_id].in2_pin); break; case MOTOR_DIR_BACKWARD: GPIO_ResetBits(motors[motor_id].in1_port, motors[motor_id].in1_pin); GPIO_SetBits(motors[motor_id].in2_port, motors[motor_id].in2_pin); break; case MOTOR_DIR_STOP: GPIO_ResetBits(motors[motor_id].in1_port, motors[motor_id].in1_pin); GPIO_ResetBits(motors[motor_id].in2_port, motors[motor_id].in2_pin); break; } } void All_Motor_Stop(void) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Speed(i, 0); Motor_Set_Direction(i, MOTOR_DIR_STOP); } } void Car_Move_Forward(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_FORWARD); Motor_Set_Speed(i, speed); } } void Car_Move_Backward(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_BACKWARD); Motor_Set_Speed(i, speed); } } void Car_Turn_Left(uint8_t speed) { Motor_Set_Direction(MOTOR1, MOTOR_DIR_BACKWARD); Motor_Set_Direction(MOTOR2, MOTOR_DIR_FORWARD); Motor_Set_Direction(MOTOR3, MOTOR_DIR_BACKWARD); Motor_Set_Direction(MOTOR4, MOTOR_DIR_FORWARD); Motor_Set_Direction(MOTOR5, MOTOR_DIR_BACKWARD); Motor_Set_Direction(MOTOR6, MOTOR_DIR_FORWARD); for(uint8_t i = 0; i < 6; i++) { Motor_Set_Speed(i, speed); } } void Car_Turn_Right(uint8_t speed) { Motor_Set_Direction(MOTOR1, MOTOR_DIR_FORWARD); Motor_Set_Direction(MOTOR2, MOTOR_DIR_BACKWARD); Motor_Set_Direction(MOTOR3, MOTOR_DIR_FORWARD); Motor_Set_Direction(MOTOR4, MOTOR_DIR_BACKWARD); Motor_Set_Direction(MOTOR5, MOTOR_DIR_FORWARD); Motor_Set_Direction(MOTOR6, MOTOR_DIR_BACKWARD); for(uint8_t i = 0; i < 6; i++) { Motor_Set_Speed(i, speed); } } void Car_Turn_For_Left(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_FORWARD); } Motor_Set_Speed(0, speed*0.7); Motor_Set_Speed(1, speed); Motor_Set_Speed(2, speed*0.7); Motor_Set_Speed(3, speed); Motor_Set_Speed(4, speed*0.7); Motor_Set_Speed(5, speed); } void Car_Turn_For_Right(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_FORWARD); } Motor_Set_Speed(0, speed); Motor_Set_Speed(1, speed*0.7); Motor_Set_Speed(2, speed); Motor_Set_Speed(3, speed*0.7); Motor_Set_Speed(4, speed); Motor_Set_Speed(5, speed*0.7); } void Car_Turn_Back_Left(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_BACKWARD); } Motor_Set_Speed(0, speed); Motor_Set_Speed(1, speed*0.7); Motor_Set_Speed(2, speed); Motor_Set_Speed(3, speed*0.7); Motor_Set_Speed(4, speed); Motor_Set_Speed(5, speed*0.7); } void Car_Turn_Back_Right(uint8_t speed) { for(uint8_t i = 0; i < 6; i++) { Motor_Set_Direction(i, MOTOR_DIR_BACKWARD); } Motor_Set_Speed(0, speed*0.7); Motor_Set_Speed(1, speed); Motor_Set_Speed(2, speed*0.7); Motor_Set_Speed(3, speed); Motor_Set_Speed(4, speed*0.7); Motor_Set_Speed(5, speed); } void Car_Stop(void) { All_Motor_Stop(); } motor.c #include "stm32f10x.h" #define MOTOR1 0 #define MOTOR2 1 #define MOTOR3 2 #define MOTOR4 3 #define MOTOR5 4 #define MOTOR6 5 #define MOTOR_DIR_FORWARD 0 #define MOTOR_DIR_BACKWARD 1 #define MOTOR_DIR_STOP 2 typedef struct { TIM_TypeDef* timer; uint16_t channel; GPIO_TypeDef* in1_port; uint16_t in1_pin; GPIO_TypeDef* in2_port; uint16_t in2_pin; } Motor_TypeDef; void Motor_Init(void); void Motor_Set_Speed(uint8_t motor_id, int16_t speed); void Motor_Set_Direction(uint8_t motor_id, uint8_t direction); void All_Motor_Stop(void); void Car_Move_Forward(uint8_t speed); void Car_Move_Backward(uint8_t speed); void Car_Turn_Left(uint8_t speed); void Car_Turn_Right(uint8_t speed); void Car_Turn_For_Left(uint8_t speed); void Car_Turn_For_Right(uint8_t speed); void Car_Turn_Back_Left(uint8_t speed); void Car_Turn_Back_Right(uint8_t speed); void Car_Stop(void); #endif motor.h #include "ax_ps2.h" #include "ax_delay.h" #include "ax_sys.h" //PS2ÊÖ±úµÄÊäÈëÊä³ö¿Ú #define DI() PAin(4) //Êý¾ÝÊäÈëÒý&frac12;Å #define CMD_H() PAout(5)=1 //ÃüÁîλ¸ß #define CMD_L() PAout(5)=0 //ÃüÁîλµÍ #define CS_H() PAout(8)=1 //CSÀ­¸ß(±ðÃûATT) #define CS_L() PAout(8)=0 //CSÀ­µÍ(±ðÃûATT) #define CLK_H() PAout(9)=1 //ʱÖÓÀ­¸ß #define CLK_L() PAout(9)=0 //ʱÖÓÀ­µÍ const uint8_t PS2_cmnd[9] = {0x01, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; //ÇëÇó»ñÈ¡Êý¾ÝÃüÁî static uint8_t PS2_data[9] = {0}; //&frac12;ÓÊÕµÄÊý¾Ý /** * @&frac14;ò Êö PS2³õÊ&frac14;»¯ * @²Î Êý ÎÞ * @·µ»ØÖµ ÎÞ */ void AX_PS2_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; //GPIOÅäÖà RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE); //DATA ÐźŴÓÊÖ±úµ&frac12;Ö÷»ú ÊäÈë¿Ú GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); //COMMMAND ÐźŴÓÖ÷»úµ&frac12;ÊÖ±ú Êä³ö GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); //CS ÊÖ±ú³ö·¢ÐźŠÐźÅÔÚͨÐÅÆÚ&frac14;ä´¦Óڵ͵çÆ&frac12; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); //CLK ÐźŴÓÖ÷»úµ&frac12;ÊÖ±ú Êä³ö¿Ú GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); //&sup1;رÕPS2ÊÖ±úÊ&sup1;ÄÜ CS_H(); } /** * @&frac14;ò Êö PS2Êý¾Ý¶Áдº¯Êý * @²Î Êý cmd:ҪдÈëµÄÃüÁî * @·µ»ØÖµ ¶Á³öÊý¾Ý */ static uint8_t PS2_ReadWriteData(uint8_t cmd) { volatile uint8_t res = 0; volatile uint8_t ref; //дÈëÃüÁ²¢¶Áȡһ¸ö1×Ö&frac12;ÚÊý¾Ý for(ref = 0x01; ref > 0x00; ref <<= 1) { ////Êä³öһλÊý¾Ý if(ref&cmd) CMD_H(); else CMD_L(); CLK_L(); AX_Delayus(16); //¶ÁȡһλÊý¾Ý if(DI()) res |= ref; CLK_H(); AX_Delayus(16); } //·µ»Ø¶Á³öÊý¾Ý return res; } /** * @&frac14;ò Êö PS2»ñÈ¡°´&frac14;ü&frac14;°Ò¡¸ËÊýÖµ¡£ * @²Î Êý *JoystickStruct ÊÖ±ú&frac14;üÖµ&frac12;á&sup1;&sup1;Ìå * @·µ»ØÖµ ÎÞ */ void AX_PS2_ScanKey(JOYSTICK_TypeDef *JoystickStruct) { uint8_t i; //Ê&sup1;ÄÜÊÖ±ú CS_L(); //¶ÁÈ¡PS2Êý¾Ý for(i=0; i<9; i++) { PS2_data[i] = PS2_ReadWriteData(PS2_cmnd[i]); } //&sup1;رÕÊ&sup1;ÄÜ CS_H(); //ÊýÖµ´«µÝ JoystickStruct->mode = PS2_data[1]; JoystickStruct->btn1 = ~PS2_data[3]; JoystickStruct->btn2 = ~PS2_data[4]; JoystickStruct->RJoy_LR = PS2_data[5]; JoystickStruct->RJoy_UD = PS2_data[6]; JoystickStruct->LJoy_LR = PS2_data[7]; JoystickStruct->LJoy_UD = PS2_data[8]; } ax_ps2.c #ifndef __AX_PS2_H #define __AX_PS2_H /* Includes ------------------------------------------------------------------*/ #include "stm32f10x.h" //PS2ÊÖ±ú&frac14;üÖµÊý¾Ý&frac12;á&sup1;&sup1;Ìå typedef struct { uint8_t mode; /* ÊÖ±úµÄ&sup1;¤×÷Ä£Ê&frac12; */ uint8_t btn1; /* B0:SLCT B1:JR B0:JL B3:STRT B4:UP B5:R B6:DOWN B7:L */ uint8_t btn2; /* B0:L2 B1:R2 B2:L1 B3:R1 B4:Y B5:B B6:A B7:X */ uint8_t RJoy_LR; /* ÓÒ±ßÒ¡¸Ë 0x00 = ×ó 0xff = ÓÒ */ uint8_t RJoy_UD; /* ÓÒ±ßÒ¡¸Ë 0x00 = ÉÏ 0xff = Ï */ uint8_t LJoy_LR; /* ×ó±ßÒ¡¸Ë 0x00 = ×ó 0xff = ÓÒ */ uint8_t LJoy_UD; /* ×ó±ßÒ¡¸Ë 0x00 = ÉÏ 0xff = Ï */ }JOYSTICK_TypeDef; /*** PS2ÎÞÏßÊÖ±ú²Ù×÷º¯Êý **********/ void AX_PS2_Init(void); //PS2³õÊ&frac14;»¯ void AX_PS2_ScanKey(JOYSTICK_TypeDef* JoystickStruct);//PS2»ñÈ¡°´&frac14;ü&frac14;°Ò¡¸ËÊýÖµ #endif /******************* (C) °æÈ¨ 2023 XTARK **************************************/ ax_ps2.h #include "ps2_adapter.h" #include "ax_ps2.h" #include "ax_delay.h" static JOYSTICK_TypeDef joystick; void PS2_Init(void) { AX_PS2_Init(); } uint8_t PS2_IsConnected(void) { return (joystick.mode == 0x73); } void PS2_ReadData(PS2_State_t* state) { AX_PS2_ScanKey(&joystick); state->Button = 0; if(joystick.btn1 & 0x01) state->Button |= PSB_SELECT; if(joystick.btn1 & 0x02) state->Button |= PSB_JOYR; if(joystick.btn1 & 0x04) state->Button |= PSB_JOYL; if(joystick.btn1 & 0x08) state->Button |= PSB_START; if(joystick.btn1 & 0x10) state->Button |= PSB_PAD_UP; if(joystick.btn1 & 0x20) state->Button |= PSB_PAD_RIGHT; if(joystick.btn1 & 0x40) state->Button |= PSB_PAD_DOWN; if(joystick.btn1 & 0x80) state->Button |= PSB_PAD_LEFT; if(joystick.btn2 & 0x01) state->Button |= PSB_L2; if(joystick.btn2 & 0x02) state->Button |= PSB_R2; if(joystick.btn2 & 0x04) state->Button |= PSB_L1; if(joystick.btn2 & 0x08) state->Button |= PSB_R1; if(joystick.btn2 & 0x10) state->Button |= PSB_Y; if(joystick.btn2 & 0x20) state->Button |= PSB_B; if(joystick.btn2 & 0x40) state->Button |= PSB_A; if(joystick.btn2 & 0x80) state->Button |= PSB_X; state->LJoy_LR = joystick.LJoy_LR; state->LJoy_UD = joystick.LJoy_UD; state->RJoy_LR = joystick.RJoy_LR; state->RJoy_UD = joystick.RJoy_UD; } ps2_adapter.c#ifndef __PS2_ADAPTER_H #define __PS2_ADAPTER_H #include "ax_ps2.h" #include "ax_delay.h" #define PSB_SELECT 0x0001 #define PSB_JOYR 0x0002 #define PSB_JOYL 0x0004 #define PSB_START 0x0008 #define PSB_PAD_UP 0x0010 #define PSB_PAD_RIGHT 0x0020 #define PSB_PAD_DOWN 0x0040 #define PSB_PAD_LEFT 0x0080 #define PSB_L2 0x0100 #define PSB_R2 0x0200 #define PSB_L1 0x0400 #define PSB_R1 0x0800 #define PSB_Y 0x1000 #define PSB_B 0x2000 #define PSB_A 0x4000 #define PSB_X 0x8000 typedef struct { uint16_t Button; uint8_t LJoy_LR; uint8_t LJoy_UD; uint8_t RJoy_LR; uint8_t RJoy_UD; } PS2_State_t; void PS2_Init(void); uint8_t PS2_IsConnected(void); void PS2_ReadData(PS2_State_t* state); #endif ps2_adapter.h 请帮我检查一下代码的正确性,为什么ps2接收器的绿色LED不亮
最新发布
10-11
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值