PyTorch实现线性回归

本文通过使用PyTorch实现线性回归模型,详细介绍了从数据准备到模型训练的全过程,并利用matplotlib可视化预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
import torch.nn as nn
from torch.optim import SGD
import matplotlib.pyplot as plt
#0.准备数据
x = torch.rand([500,1])
y_true = 3*x + 0.8
#1.定义模型
class MyLinear(nn.Module):
    def __init__(self):
        super(MyLinear, self).__init__()
        self.linear = nn.Linear(1,1)
    def forward(self,x):
        out = self.linear(x)
        return out

#2.实例化模型,优化器实例化,loss实例化
my_linear = MyLinear()
optimizer = SGD(my_linear.parameters(),0.001)
loss_fn = nn.MSELoss()
#3.循环,进行梯度下降,参数的更新
for i in range(30000):
    y_predict = my_linear(x)
    loss = loss_fn(y_predict,y_true)
    optimizer.zero_grad()
    loss.backward()
    #参数更新
    optimizer.step()
    if i%100 == 0:
        params = list(my_linear.parameters())
        print(loss.item(),params[0].item(),params[1].item())
my_linear.eval()
predict = my_linear(x)
predict = predict.data.numpy()
plt.scatter(x.data.numpy(),y_true.data.numpy(),c='r')
plt.plot(x.data.numpy(),predict)
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值