[leetcode] Implement Stack using Queues

本文介绍了一种利用两个队列来模拟栈数据结构的方法。主要实现了栈的基本操作:push、pop、top及empty检查。通过将数据存储在一个队列中,并在需要执行pop或top操作时,借助另一个队列来辅助完成。

题目链接在此


Implement the following operations of a stack using queues.

  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • empty() -- Return whether the stack is empty.
Notes:
  • You must use only standard operations of a queue -- which means only push to backpeek/pop from frontsize, and is empty operations are valid.
  • Depending on your language, queue may not be supported natively. You may simulate a queue by using a list or deque (double-ended queue), as long as you use only standard operations of a queue.
  • You may assume that all operations are valid (for example, no pop or top operations will be called on an empty stack).

用2个队列:所有数据放在第一个队列,pop和top操作时要用到第二个队列进行暂时存储,最后第二个队列中的数据还是要按顺序放回第一个队列。


class Stack {
public:
	// Push element x onto stack.
	void push(int x) {
		a.push(x);
	}

	// Removes the element on top of the stack.
	void pop() {
		if (empty()) {
			cout << "The stack is empty!\n";
			return ;
		}

		while (a.size() != 1) {
			int tmp = a.front();
			a.pop();
			b.push(tmp);
		}

		a.pop();

		while (!b.empty()) {
			int tmp = b.front();
			b.pop();
			a.push(tmp);
		}
	}

	// Get the top element.
	int top() {
		if (empty()) {
			cout << "The stack is empty!\n";
			return -1;
		}

		int head;
		while (!a.empty()) {
			head = a.front();
			a.pop();
			b.push(head);
		}

		while (!b.empty()) {
			int tmp = b.front();
			b.pop();
			a.push(tmp);
		}

		return head;
	}

	// Return whether the stack is empty.
	bool empty() {
		return a.empty() && b.empty();
	}

private:
	queue<int> a;
	queue<int> b;
};


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值