[Leetcode]Number of 1 Bits

本文分享了一道LeetCode位操作题目“计算整数中1的个数”的两种高效解法。第一种方法通过不断右移判断每一位是否为1;第二种方法利用n-1与n进行与运算的特点巧妙地去除最低位的1,直至n变为0,实现快速计数。

那个...暑期实习(打杂),空闲的时候就把leetcode翻出来刷几道。距离上次写博客已经4个月了!

每次自己写完代码,在和网上的大神一对比总会自愧不如。但同时又可以发现很多让人眼前一亮的解法,精神总会为之一振!

题目链接在此

Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight).

For example, the 32-bit integer ’11' has binary representation 00000000000000000000000000001011, so the function should return 3.


解法来自这位大神

(1)解法1:右移

class Solution {
public:
    int hammingWeight(uint32_t n) {
       int count = 0;
    while(n)
    {
        if(n & 1)
            count ++;

        n = n >> 1;
    }

    return count;
    }
};

解法2:简直高能!

假设n=1111000111000 那n-1 = 1111000110111, (n-1) & n = 1111000110000,刚好把最后一个1给干掉了。也就是说,(n-1)&n 刚好会从最后一位开始,每次会干掉一个1。这样速度就比下面的快了。有几个1,就会执行几次。

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int count = 0;

    while (n)
    {
        ++ count;
        n = (n - 1) & n;
    }

    return count;
    }
};



下载前必看:https://renmaiwang.cn/s/bvbfw Verilog设计_串并转换 / 移位寄存器实现了一种串并转换的功能,其核心原理在于移位寄存器的运用。 这里详细展示了串转并以及并转串两种不同的设计方案。 每一种转换模式都设有专属的使能信号,同时并行输出数据的格式提供了两种选择:最低有效位优先(lsb)和最高有效位优先(msb)。 串并转换技术主要应用于串行传输与并行传输这两种数据传输模式之间的相互转换,而移位寄存器是达成这一目标的常用工具,能够支持并行及串行的数据输入与输出操作。 这些移位寄存器通常被设定为“串行输入、并行输出”(SIPO)或“并行输入、串行输出”(PISO)两种工作模式。 在串行数据输出的过程中,构成数据和字符的码元会按照既定的时间顺序逐位进行传输。 相比之下,并行数据传输则是在同一时刻将固定数量(普遍为8位或16位等)的数据和字符码元同时发送至接收端。 数据输入通常采用串行格式进行。 一旦数据成功输入寄存器,它便可以在所有输出端同时被读取,或者选择逐位移出。 寄存器中的每个触发器均设计为边沿触发类型,并且所有触发器均以特定的时钟频率协同工作。 对于每一个输入位而言,它需要经过N个时钟周期才能最终在N个输出端呈现,从而完成并行输出。 值得注意的是,在串行加载数据期间,并行输出端的数据状态应保持稳定。 数据输入则采用并行格式。 在将数据写入寄存器的操作过程中,写/移位控制线必须暂时处于非工作状态;而一旦需要执行移位操作,控制线便会变为激活状态,并且寄存器会被锁定以保持当前状态。 只要时钟周期数不超过输入数据串的长度,数据输出端Q将按照预定的顺序逐位读出并行数据,并且必须明确区分最低有效位(LSB)和最高有效位(MSB)。
### LeetCode Problems Involving Counting the Number of 1s in Binary Representation #### Problem Description from LeetCode 191. Number of 1 Bits A task involves writing a function that receives an unsigned integer and returns the quantity of '1' bits within its binary form. The focus lies on identifying and tallying these specific bit values present in any given input number[^1]. ```python class Solution: def hammingWeight(self, n: int) -> int: count = 0 while n: count += n & 1 n >>= 1 return count ``` This Python code snippet demonstrates how to implement the solution using bitwise operations. #### Problem Description from LeetCode 338. Counting Bits Another related challenge requires generating an output list where each element represents the amount of set bits ('1') found in the binary notation for integers ranging from `0` up to a specified value `n`. This problem emphasizes creating an efficient algorithm capable of handling ranges efficiently[^4]. ```python def countBits(num): result = [0] * (num + 1) for i in range(1, num + 1): result[i] = result[i >> 1] + (i & 1) return result ``` Here, dynamic programming principles are applied alongside bitwise shifts (`>>`) and AND (`&`) operators to optimize performance during computation. #### Explanation Using Brian Kernighan Algorithm For optimizing further especially with large inputs, applying algorithms like **Brian Kernighan** offers significant advantages due to reduced iterations needed per operation compared against straightforward methods iterating through all possible positions or dividing repeatedly until reaching zero. The core idea behind this method relies upon subtracting powers-of-two corresponding only to those places holding actual ‘ones’ thereby skipping over zeroes entirely thus reducing unnecessary checks: ```python def hammingWeight(n): count = 0 while n != 0: n &= (n - 1) count += 1 return count ``` --related questions-- 1. How does the Hamming weight calculation differ between signed versus unsigned integers? 2. Can you explain why shifting right works effectively when determining counts of one-bits? 3. What optimizations exist beyond basic iteration techniques for calculating bit counts? 4. Is there any difference in implementation logic required across various programming languages supporting similar syntaxes? 5. Why might someone choose the Brian Kernighan approach over other strategies?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值