typedef long long LL;
//扩展欧几里德递归实现 版本1
void exgcd(LL a, LL b, LL& g, LL& x, LL& y)
{
if (!b) g = a, x = 1, y = 0;
else exgcd(b, a%b, g, y, x), y -= x * (a / b);
}
//扩展欧几里德递归实现 版本2
//求(x,y),满足 a*x+b*y==1。返回值r即gcd(a,b)的值
int exgcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
int r = exgcd(b, a%b, x, y);
int t = y;
y = x - (a/b) * y;
x = t;
return r;
}
//扩展欧几里德的非递归实现,返回值表示gcd(m,n);
int exgcd(int m, int n, int &x, int &y) {
if (n == 0) {
x = 1; y = 0;
return m;
}
int a, a1, b, b1, c, d, q, r, t;
a1 = b = 1;
a = b1 = 0;
c = m; d = n;
q = c/d; r = c%d;
while (r) {
c = d;
d = r;
t = a1;
a1 = a;
a = t - q * a;
t = b1;
b1 = b;
b = t - q * b;
q = c/d;
r = c%d;
}
x = a; y = b;
return d;
}
扩展欧几里德
最新推荐文章于 2019-08-23 11:57:27 发布