黑马程序员---ArrayList、Vector、LinkedList的区别及其优缺点?

------- android培训java培训期待与您交流! ----------

一、同步性 

ArrayList,LinkedList是不同步的,而Vestor是同步的。所以如果不要求线程安全的话,可以使用ArrayList或LinkedList,可以节省为同步而耗费的开销。但在多线程的情况下,有时候就不得不使用Vector了。当然,也可以通过一些办法包装ArrayList,LinkedList,使他们也达到同步,但效率可能会有所降低。 
二、可变性 
从内部实现机制来讲ArrayList和Vector都是使用Objec的数组形式来存储的。当你向这两种类型中增加元素的时候,如果元素的数目超出了内部数组目前的长度它们都需要扩展内部数组的长度,Vector缺省情况下自动增长原来一倍的数组长度,ArrayList是原来的50%,所以最后你获得的这个集合所占的空间总是比你实际需要的要大。所以如果你要在集合中保存大量的数据那么使用Vector有一些优势,因为你可以通过设置集合的初始化大小来避免不必要的资源开销。 
三、操作效率 
ArrayList和Vector中,从指定的位置(用index)检索一个对象,或在集合的末尾插入、删除一个对象的时间是一样的,可表示为O(1)。但是,如果在集合的其他位置增加或移除元素那么花费的时间会呈线形增长:O(n-i),其中n代表集合中元素的个数,i代表元素增加或移除元素的索引位置。为什么会这样呢?以为在进行上述操作的时候集合中第i和第i个元素之后的所有元素都要执行(n-i)个对象的位移操作。 
LinkedList中,在插入、删除集合中任何位置的元素所花费的时间都是一样的—O(1),但它在索引一个元素的时候比较慢,为O(i),其中i是索引的位置。 
ArrayList和LinkedList是两个集合 类,用于存储一系列的对象引用(references)。例如我们可以用ArrayList来存储一系列的String或者Integer。那么 ArrayList和LinkedList在性能上有什么差别呢?什么时候应该用ArrayList什么时候又该用LinkedList呢? 
ArrayList和LinkedList在性能上各 有优缺点,都有各自所适用的地方,总的说来可以描述如下: 
1.对ArrayList和LinkedList而言,在列表末尾增加一个元素所花的开销都是固定的。对 ArrayList而言,主要是在内部数组中增加一项,指向所添加的元素,偶尔可能会导致对数组重新进行分配;而对LinkedList而言,这个开销是 统一的,分配一个内部Entry对象。 
2.在ArrayList的 中间插入或删除一个元素意味着这个列表中剩余的元素都会被移动;而在LinkedList的中间插入或删除一个元素的开销是固定的。 
3.LinkedList不 支持高效的随机元素访问。 
4.ArrayList的空 间浪费主要体现在在list列表的结尾预留一定的容量空间,而LinkedList的空间花费则体现在它的每一个元素都需要消耗相当的空间 
可以这样说:当操作是在一列 数据的后面添加数据而不是在前面或中间,并且需要随机地访问其中的元素时,使用ArrayList会提供比较好的性能;当你的操作是在一列数据的前面或中 间添加或删除数据,并且按照顺序访问其中的元素时,就应该使用LinkedList了。 
所以,如果只是查找特定位置的元素或只在集合的末端增加、移除元素,那么使用Vector或ArrayList都可以。如果是对其它指定位置的插入、删除操作,最好选择LinkedList
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值